Suppr超能文献

脑动脉瘤的容积监测:MRA 的陷阱。

Volumetric surveillance of brain aneurysms: Pitfalls of MRA.

机构信息

Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.

Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.

出版信息

Interv Neuroradiol. 2023 Oct;29(5):532-539. doi: 10.1177/15910199221100619. Epub 2022 May 12.

Abstract

INTRODUCTION

Untreated brain aneurysms are usually surveilled with serial MR imaging and evaluated with 2D multiplanar measurements. The assessment of aneurysm growth may be more accurate with volumetric analysis. We evaluated the accuracy of a magnetic resonance angiography (MRA) segmentation pipeline for aneurysm volume measurement and surveillance.

METHODS

A pipeline to determine aneurysm volume was developed and tested on two aneurysm phantoms imaged with time-of flight (TOF) MRA and 3D rotational angiography (3DRA). The accuracy of the pipeline was then evaluated by reconstructing 10 aneurysms imaged with contrast enhanced-MRA (CE-MRA) and 3DRA. This calibrated and refined post-processing pipeline was subsequently used to analyse aneurysms from our prospectively acquired database. Volume changes above the threshold of error were considered true volume changes. The accuracy of these measurements was analysed.

RESULTS

TOF-MRA reconstructions were not as accurate as CE-MRA reconstructions. When compared to 3DRA, CE-MRA underestimated aneurysm volume by 7.8% and did not accurately register the presence of blebs. Eighteen aneurysms (13 saccular and 5 fusiform) were analysed with the optimized 3D volume reconstruction pipeline, with a mean follow-up time of 11 months. Artifact accounted for 10.2% error in volume measurements using serial CE-MRA. When this margin of error was used to assess aneurysms volume in serial imaging with CE-MRA, only two fusiform aneurysms changed in volume. The variations in volume of these two fusiform aneurysms were caused by intra-mural and intrasaccular thrombosis.

CONCLUSIONS

CE-MRA and TOF-MRA 3D volume reconstructions may not register minor morphological changes such as the appearance of blebs. CE-MRA underestimates volume by 7.8% compared to 3DRA. Serial CE-MRA volume measurements had a larger margin of error of approximately 10.2%. MRA-based volumetric measurements may not be appropriate for aneurysm surveillance.

摘要

简介

未经治疗的脑动脉瘤通常通过连续磁共振成像进行监测,并通过二维多平面测量进行评估。容积分析可能更能准确评估动脉瘤的生长。我们评估了磁共振血管造影(MRA)分割管道用于动脉瘤体积测量和监测的准确性。

方法

开发了一种用于确定动脉瘤体积的管道,并在使用时间飞越(TOF)MRA 和 3D 旋转血管造影(3DRA)成像的两个动脉瘤模型上进行了测试。然后,通过重建使用对比增强-MRA(CE-MRA)和 3DRA 成像的 10 个动脉瘤来评估管道的准确性。随后,使用经过校准和改进的后处理管道分析我们前瞻性采集的数据库中的动脉瘤。超过误差阈值的体积变化被认为是真正的体积变化。分析了这些测量的准确性。

结果

TOF-MRA 重建不如 CE-MRA 重建准确。与 3DRA 相比,CE-MRA 低估了动脉瘤体积 7.8%,并且不能准确登记 blebs 的存在。使用优化的 3D 体积重建管道分析了 18 个动脉瘤(13 个囊状和 5 个梭形),平均随访时间为 11 个月。使用连续 CE-MRA 进行体积测量时,伪影导致 10.2%的误差。当使用此误差幅度来评估 CE-MRA 连续成像中的动脉瘤体积时,只有两个梭形动脉瘤的体积发生变化。这两个梭形动脉瘤的体积变化是由壁内和囊内血栓形成引起的。

结论

CE-MRA 和 TOF-MRA 3D 体积重建可能无法登记微小的形态变化,如 blebs 的出现。与 3DRA 相比,CE-MRA 低估了体积 7.8%。连续 CE-MRA 体积测量的误差幅度较大,约为 10.2%。基于 MRA 的体积测量可能不适合动脉瘤监测。

相似文献

1
Volumetric surveillance of brain aneurysms: Pitfalls of MRA.
Interv Neuroradiol. 2023 Oct;29(5):532-539. doi: 10.1177/15910199221100619. Epub 2022 May 12.
4
Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
Eur J Radiol. 2013 Dec;82(12):e853-9. doi: 10.1016/j.ejrad.2013.08.052. Epub 2013 Sep 12.
6
Follow-up of coiled cerebral aneurysms at 3T: comparison of 3D time-of-flight MR angiography and contrast-enhanced MR angiography.
AJNR Am J Neuroradiol. 2008 Sep;29(8):1530-6. doi: 10.3174/ajnr.A1166. Epub 2008 Jun 12.
9
Comparison of remnant size in embolized intracranial aneurysms measured at follow-up with DSA and MRA.
Neuroradiology. 2012 Dec;54(12):1381-8. doi: 10.1007/s00234-012-1063-3. Epub 2012 Jul 13.

引用本文的文献

1
Imaging of Intracranial Aneurysms: A Review of Standard and Advanced Imaging Techniques.
Transl Stroke Res. 2025 Jun;16(3):1016-1027. doi: 10.1007/s12975-024-01261-w. Epub 2024 Jun 10.
2
Spiral time-of-flight magnetic resonance angiography for intracranial vascular imaging: performance compared to conventional Cartesian angiogram.
Quant Imaging Med Surg. 2024 May 1;14(5):3417-3431. doi: 10.21037/qims-23-1533. Epub 2024 Apr 23.

本文引用的文献

1
Risk of Rupture After Intracranial Aneurysm Growth.
JAMA Neurol. 2021 Oct 1;78(10):1228-1235. doi: 10.1001/jamaneurol.2021.2915.
2
Reliability and Agreement of 2D and 3D Measurements on MRAs for Growth Assessment of Unruptured Intracranial Aneurysms.
AJNR Am J Neuroradiol. 2021 Sep;42(9):1598-1603. doi: 10.3174/ajnr.A7186. Epub 2021 Jul 1.
3
An Efficient Method for Aneurysm Volume Quantification Applicable in Any Shape and Modalities.
J Korean Neurosurg Soc. 2021 Jul;64(4):514-523. doi: 10.3340/jkns.2020.0255. Epub 2021 Jun 29.
4
A Volumetric Metric for Monitoring Intracranial Aneurysms: Repeatability and Growth Criteria in a Longitudinal MR Imaging Study.
AJNR Am J Neuroradiol. 2021 Sep;42(9):1591-1597. doi: 10.3174/ajnr.A7190. Epub 2021 Jun 24.
5
Insights into the pathogenesis of cerebral fusiform aneurysms: high-resolution MRI and computational analysis.
J Neurointerv Surg. 2021 Dec;13(12):1180-1186. doi: 10.1136/neurintsurg-2020-017243. Epub 2021 Feb 25.
6
Blebs in intracranial aneurysms: prevalence and general characteristics.
J Neurointerv Surg. 2021 Mar;13(3):226-230. doi: 10.1136/neurintsurg-2020-016274. Epub 2020 Jul 17.
9
Intracranial aneurysm growth: consistency of morphological changes.
Neurosurg Focus. 2019 Jul 1;47(1):E5. doi: 10.3171/2019.4.FOCUS1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验