Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany.
Department of Chemistry, University of York Heslington, York, YO10 5DD, UK.
Chembiochem. 2022 Aug 3;23(15):e202200149. doi: 10.1002/cbic.202200149. Epub 2022 Jun 14.
The asymmetric reduction of ketones to chiral hydroxyl compounds by alcohol dehydrogenases (ADHs) is an established strategy for the provision of valuable precursors for fine chemicals and pharmaceutics. However, most ADHs favor linear aliphatic and aromatic carbonyl compounds, and suitable biocatalysts with preference for cyclic ketones and diketones are still scarce. Among the few candidates, the alcohol dehydrogenase from Thauera aromatica (ThaADH) stands out with a high activity for the reduction of the cyclic α-diketone 1,2-cyclohexanedione to the corresponding α-hydroxy ketone. This study elucidates catalytic and structural features of the enzyme. ThaADH showed a remarkable thermal and pH stability as well as stability in the presence of polar solvents. A thorough description of the substrate scope combined with the resolution and description of the crystal structure, demonstrated a strong preference of ThaADH for cyclic α-substituted cyclohexanones, and indicated structural determinants responsible for the unique substrate acceptance.
醇脱氢酶(ADHs)将酮不对称还原为手性羟基化合物,这是为精细化学品和药物提供有价值前体的成熟策略。然而,大多数 ADHs 偏爱线性脂肪族和芳香族羰基化合物,而对环状酮和二酮具有偏好的合适生物催化剂仍然稀缺。在少数候选者中,来自陶厄氏菌属(Thauera aromatica)的醇脱氢酶(ThaADH)因其对环状α-二酮 1,2-环己二酮的还原具有很高的活性而脱颖而出,生成相应的α-羟基酮。本研究阐明了该酶的催化和结构特征。ThaADH 表现出显著的热稳定性和 pH 稳定性,以及在存在极性溶剂时的稳定性。对底物范围的全面描述,结合分辨率和晶体结构的描述,表明 ThaADH 对环状α-取代环己酮具有强烈的偏好,并指出了负责独特底物接受的结构决定因素。