Suppr超能文献

使用卷积神经网络模型对肝海绵状血管瘤或肝细胞癌进行分类。

Classification of hepatic cavernous hemangioma or hepatocellular carcinoma using a convolutional neural network model.

作者信息

Cao Yunbao, Yu Jing, Zhang Hu, Xiong Jian, Luo Zhonghua

机构信息

Department of Interventional Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.

Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

出版信息

J Gastrointest Oncol. 2022 Apr;13(2):787-791. doi: 10.21037/jgo-22-197.

Abstract

BACKGROUND

Computed tomography (CT) is a common imaging technique for diagnosis of liver tumors. However, the intensity similarity on non-contrast CT images is small, making it difficult for radiologists to visually identify hepatic cavernous hemangioma (HCH) and hepatocellular carcinoma (HCC). Recently, convolutional neural networks (CNN) have been widely used in the study of medical image classification because more discriminative image features can be extracted than the human eye. Therefore, this study focused on developing a CNN model for identifying HCH and HCC.

METHODS

This study is a retrospective study. A dataset consisting of 774 non-contrast CT images was collected from 50 patients with HCC or HCH, and the ground truth was given by three radiologists based on contrast-enhanced CT. Firstly, the non-contrast CT images dataset were randomly divided into a training set (n=559) and a test set (n=215). Then, we performed preprocessing of the non-contrast CT images using pseudo-color conversion, and the proposed CNN model developed using training set. Finally, the following indicators (accuracy, precision, recall) were used to quantitatively analyze the results.

RESULTS

In the test set, the proposed CNN model achieved a high classification accuracy of 84.25%, precision of 81.36%, and recall of 82.18%.

CONCLUSIONS

The CNN model for identifying HCH and HCC improves the accuracy of diagnosis on non-contrast CT images.

摘要

背景

计算机断层扫描(CT)是诊断肝脏肿瘤的常用成像技术。然而,非增强CT图像上的强度相似性较小,这使得放射科医生难以通过视觉识别肝海绵状血管瘤(HCH)和肝细胞癌(HCC)。近年来,卷积神经网络(CNN)已广泛应用于医学图像分类研究,因为它能提取比人眼更具判别力的图像特征。因此,本研究致力于开发一种用于识别HCH和HCC的CNN模型。

方法

本研究为回顾性研究。从50例HCC或HCH患者中收集了由774张非增强CT图像组成的数据集,三位放射科医生基于增强CT给出了真实情况。首先,将非增强CT图像数据集随机分为训练集(n = 559)和测试集(n = 215)。然后,我们使用伪彩色转换对非增强CT图像进行预处理,并使用训练集开发了所提出的CNN模型。最后,使用以下指标(准确率、精确率、召回率)对结果进行定量分析。

结果

在测试集中,所提出的CNN模型实现了84.25%的高分类准确率、81.36%的精确率和82.18%的召回率。

结论

用于识别HCH和HCC的CNN模型提高了非增强CT图像的诊断准确性。

相似文献

本文引用的文献

4
A global view of hepatocellular carcinoma: trends, risk, prevention and management.全球视角下的肝细胞癌:趋势、风险、预防与管理。
Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):589-604. doi: 10.1038/s41575-019-0186-y. Epub 2019 Aug 22.
9
Treatment of Liver Cancer.肝癌的治疗
Cold Spring Harb Perspect Med. 2015 Jul 17;5(9):a021535. doi: 10.1101/cshperspect.a021535.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验