Chen Jianan, Liu Song, Li Yong, Zhang Zaoqiang, Liao Nianchun, Shi Huihong, Hu Wenjun, Lin Youxi, Chen Yanbo, Gao Bo, Huang Dongsheng, Liang Anjing, Gao Wenjie
Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China.
Sun Yat-Sen Memorial Hospital Department of Radiology, Guangzhou, China.
Eur Spine J. 2025 Mar;34(3):1177-1186. doi: 10.1007/s00586-024-08623-w. Epub 2024 Dec 21.
To develop a deep learning system for automatic segmentation of compression fracture vertebral bodies on thoracolumbar CT and differentiate between fresh and old fractures.
We included patients with thoracolumbar fractures treated at our Hospital South Campus from January 2020 to December 2023, with prospective validation from January to June 2024, and used data from the North Campus from January to December 2023 for external validation. Fresh fractures were defined as back pain lasting less than 4 weeks, with MRI showing bone marrow edema (BME). We utilized a 3D V-Net for image segmentation and several ResNet and DenseNet models for classification, evaluating performance with ROC curves, accuracy, sensitivity, specificity, precision, F1 score, and AUC. The optimal model was selected to construct deep learning system and its diagnostic efficacy was compared with that of two clinicians.
The training dataset included 238 vertebras (man/women: 55/183; age: 72.11 ± 11.55), with 59 in internal validation (man/women: 13/46; age: 74.76 ± 8.96), 34 in external validation, and 48 in prospective validation. The 3D V-Net model achieved a DSC of 0.90 on the validation dataset. ResNet18 performed best among classification models, with an AUC of 0.96 in validation, 0.89 in external dataset, and 0.87 in prospective validation, surpassing the two clinicians in both external and prospective validations.
The deep learning model can automatically and accurately segment the vertebral bodies with compression fractures and classify them as fresh or old fractures, thereby assisting clinicians in making clinical decisions.
开发一种深度学习系统,用于在胸腰椎CT上自动分割压缩性骨折椎体,并区分新鲜骨折和陈旧骨折。
我们纳入了2020年1月至2023年12月在我院南院区接受治疗的胸腰椎骨折患者,并于2024年1月至6月进行前瞻性验证,同时使用2023年1月至12月北院区的数据进行外部验证。新鲜骨折定义为背痛持续时间少于4周,MRI显示骨髓水肿(BME)。我们使用3D V-Net进行图像分割,并使用多个ResNet和DenseNet模型进行分类,通过ROC曲线、准确率、灵敏度、特异性、精确率、F1分数和AUC评估性能。选择最优模型构建深度学习系统,并将其诊断效能与两名临床医生的诊断效能进行比较。
训练数据集包括238个椎体(男性/女性:55/183;年龄:72.11±11.55),内部验证中有59个(男性/女性:13/46;年龄:74.76±8.96),外部验证中有34个,前瞻性验证中有48个。3D V-Net模型在验证数据集上的DSC为0.90。ResNet18在分类模型中表现最佳,在验证中的AUC为0.96,在外部数据集中为0.89,在前瞻性验证中为0.87,在外部和前瞻性验证中均超过两名临床医生。
深度学习模型可以自动、准确地分割压缩性骨折椎体,并将其分类为新鲜骨折或陈旧骨折,从而协助临床医生做出临床决策。