Estrada-Flores S, Martínez-Luévanos A, Bartolo-Pérez P, García-Cerda L A, Flores-Guia T E, Aguilera-González E N
Departamento de Materiales Cerámicos Avanzados y Energía, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Blvd. V. Carranza s/n 25280 Saltillo Coahuila Mexico
Departamento de Física Aplicada, Cinvestav Unidad Mérida, C.P. 97310 Mérida Yucatán Mexico.
RSC Adv. 2018 Dec 14;8(73):41818-41827. doi: 10.1039/c8ra07116k. eCollection 2018 Dec 12.
In this article a facile and green procedure for the synthesis of novel calcium silicate hydrated-nylon 6/66 nanocomposites is proposed. Calcium silicate hydrate (CSH) was synthesized by a hydrolysis technique assisted by ultrasound and using sodium dodecyl sulphate (SDS) as surfactant. CSH-nylon 6/66 nanocomposites were obtained by a solution mixing method at CSH loadings of 2.5, 25, 50 and 75 weight percent (samples CA, CD, CB and CC, respectively). The synthesis of CSH was confirmed by DRX and ATR-FTIR techniques; the CSH sample presents as mesoporous with a diameter between 3.34 nm and 52.68 nm and an average size of 27.07 nm; the specific surface area of the CSH sample was 343.99 m g. The formation of the CSH-nylon 6/66 nanocomposites was confirmed by ATR-FTIR, SEM, XRD, TGA, DSC and XPS techniques. The crystallization and melting temperatures ( and , respectively) of CSH-nylon 6/66 nanocomposites occur at a slightly lower temperatures than those of neat Ny 6/66. These results suggest a slight decrease of the crystallite size and crystallization rate of nylon 6/66. The fusion enthalpy (Δ ) decreases with increase in CSH content in nylon 6/66, which can be associated to a good dispersion. The XRD peaks of the nylon 6/66 at 19.99° and 23.77° were displaced at slightly higher values of 2 with the incorporation of CSH in the polymer forming nanocomposite materials.
本文提出了一种简便绿色的方法来合成新型水合硅酸钙-尼龙6/66纳米复合材料。通过超声辅助水解技术并使用十二烷基硫酸钠(SDS)作为表面活性剂合成了水合硅酸钙(CSH)。通过溶液混合法在CSH负载量为2.5、25、50和75重量百分比(分别为样品CA、CD、CB和CC)的情况下获得了CSH-尼龙6/66纳米复合材料。通过DRX和ATR-FTIR技术证实了CSH的合成;CSH样品呈现为介孔结构,直径在3.34纳米至52.68纳米之间,平均尺寸为27.07纳米;CSH样品的比表面积为343.99 m²/g。通过ATR-FTIR、SEM、XRD、TGA、DSC和XPS技术证实了CSH-尼龙6/66纳米复合材料的形成。CSH-尼龙6/66纳米复合材料的结晶温度和熔融温度(分别为 和 )比纯尼龙6/66的略低。这些结果表明尼龙6/66的微晶尺寸和结晶速率略有下降。随着尼龙6/66中CSH含量的增加,熔融焓(Δ )降低,这可能与良好的分散性有关。在聚合物中加入CSH形成纳米复合材料时,尼龙6/66在19.99°和23.77°处的XRD峰在略高的2 值处发生位移。