Suppr超能文献

CAS(ME):一个具有深度信息和高生态有效性的第三代面部自发微表情数据库。

CAS(ME): A Third Generation Facial Spontaneous Micro-Expression Database With Depth Information and High Ecological Validity.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2782-2800. doi: 10.1109/TPAMI.2022.3174895. Epub 2023 Feb 3.

Abstract

Micro-expression (ME) is a significant non-verbal communication clue that reveals one person's genuine emotional state. The development of micro-expression analysis (MEA) has just gained attention in the last decade. However, the small sample size problem constrains the use of deep learning on MEA. Besides, ME samples distribute in six different databases, leading to database bias. Moreover, the ME database development is complicated. In this article, we introduce a large-scale spontaneous ME database: CAS(ME) . The contribution of this article is summarized as follows: (1) CAS(ME) offers around 80 hours of videos with over 8,000,000 frames, including manually labeled 1,109 MEs and 3,490 macro-expressions. Such a large sample size allows effective MEA method validation while avoiding database bias. (2) Inspired by psychological experiments, CAS(ME) provides the depth information as an additional modality unprecedentedly, contributing to multi-modal MEA. (3) For the first time, CAS(ME) elicits ME with high ecological validity using the mock crime paradigm, along with physiological and voice signals, contributing to practical MEA. (4) Besides, CAS(ME) provides 1,508 unlabeled videos with more than 4,000,000 frames, i.e., a data platform for unsupervised MEA methods. (5) Finally, we demonstrate the effectiveness of depth information by the proposed depth flow algorithm and RGB-D information.

摘要

微表情(ME)是一种重要的非言语交流线索,能够揭示一个人的真实情绪状态。微表情分析(MEA)的发展在过去十年才刚刚受到关注。然而,小样本量的问题限制了深度学习在 MEA 中的应用。此外,ME 样本分布在六个不同的数据库中,导致了数据库的偏差。而且,ME 数据库的开发较为复杂。在本文中,我们引入了一个大规模的自发 ME 数据库:CAS(ME) 。本文的贡献总结如下:(1)CAS(ME) 提供了大约 80 小时的视频,超过 800 万帧,包括手动标记的 1109 个 ME 和 3490 个宏观表情。如此大的样本量允许有效的 MEA 方法验证,同时避免数据库的偏差。(2)受心理学实验的启发,CAS(ME) 提供了前所未有的深度信息作为附加模态,有助于多模态 MEA。(3)首次使用模拟犯罪范式,结合生理和语音信号,使用高生态有效性的方法引发 ME,为实际的 MEA 做出贡献。(4)此外,CAS(ME) 提供了 1508 个未标记的视频,超过 400 万帧,即一个用于无监督 MEA 方法的数据平台。(5)最后,我们通过提出的深度流算法和 RGB-D 信息证明了深度信息的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验