Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, Texas, USA.
South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA.
J Neurochem. 2022 Sep;162(5):430-443. doi: 10.1111/jnc.15616. Epub 2022 May 12.
Microglia have been implicated in multiple sclerosis (MS) pathogenesis. The fractalkine receptor CX3CR1 limits the activation of pathogenic microglia and the human polymorphic CX3CR1 (hCX3CR1 ) variant increases disease progression in models of MS. However, the role of hCX3CR1 variant on microglial activation and central nervous system repair mechanisms remains unknown. Therefore, using transgenic mice expressing the hCX3CR1 variant, we aimed to determine the contribution of defective CX3CR1 signaling to neuroinflammation and remyelination in the cuprizone model of focal demyelination. Here, we report that mice expressing hCX3CR1 exhibit marked demyelination and microgliosis following acute cuprizone treatment. Nanostring gene expression analysis in demyelinated lesions showed that hCX3CR1 but not CX3CR1-deficient mice up-regulated the cuprizone-induced gene profile linked to inflammatory, oxidative stress, and phagocytic pathways. Although CX3CR1-deficient (CX3CR1-KO) and fractalkine-deficient (FKN-KO) mice displayed a comparable demyelination and microglial activation phenotype to hCX3CR1 mice, only CX3CR1-deficient and CX3CR1-WT mice showed significant myelin recovery 1 week from cuprizone withdrawal. Confocal microscopy showed that hCX3CR1 variant inhibits the generation of cells involved in myelin repair. Our results show that defective fractalkine signaling contributes to regional differences in demyelination, and suggest that the CX3CR1 pathway activity may be a key mechanism for limiting toxic gene responses in neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15416.
小胶质细胞被认为与多发性硬化症(MS)的发病机制有关。趋化因子受体 CX3CR1 限制了致病性小胶质细胞的激活,人类多态性 CX3CR1(hCX3CR1)变体增加了 MS 模型中的疾病进展。然而,hCX3CR1 变体对小胶质细胞激活和中枢神经系统修复机制的作用仍不清楚。因此,我们使用表达 hCX3CR1 变体的转基因小鼠,旨在确定 CX3CR1 信号传导缺陷对杯状藻毒素诱导的局灶性脱髓鞘模型中的神经炎症和髓鞘再生的贡献。在这里,我们报告表达 hCX3CR1 的小鼠在急性杯状藻毒素处理后表现出明显的脱髓鞘和小胶质细胞增生。脱髓鞘病变中的 Nanostring 基因表达分析显示,hCX3CR1 而不是 CX3CR1 缺陷型(CX3CR1-KO)小鼠上调了与炎症、氧化应激和吞噬途径相关的杯状藻毒素诱导基因谱。尽管 CX3CR1 缺陷型(CX3CR1-KO)和趋化因子配体 11 缺陷型(FKN-KO)小鼠表现出与 hCX3CR1 小鼠相当的脱髓鞘和小胶质细胞激活表型,但只有 CX3CR1 缺陷型和 CX3CR1-WT 小鼠在从杯状藻毒素中撤出 1 周后显示出明显的髓鞘恢复。共聚焦显微镜显示 hCX3CR1 变体抑制了参与髓鞘修复的细胞的产生。我们的研究结果表明,CX3CR1 缺陷型信号传导有助于脱髓鞘的区域性差异,并表明 CX3CR1 途径的活性可能是限制神经炎症中毒性基因反应的关键机制。本期的封面图片:https://doi.org/10.1111/jnc.15416