Gladstone Institutes, San Francisco, CA, USA.
Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
Nat Immunol. 2020 May;21(5):513-524. doi: 10.1038/s41590-020-0654-0. Epub 2020 Apr 13.
Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.
氧化应激是先天免疫诱导神经退行性变的核心部分。然而,中枢神经系统(CNS)先天免疫细胞中导致氧化应激的转录组景观尚不清楚,并且针对其神经毒性功能的治疗方法并不广泛。在这里,我们提供了神经炎症性疾病中氧化应激先天免疫细胞图谱,并报告了新的可药物治疗途径的发现。产生氧化应激的 CNS 先天免疫细胞的转录组分析确定了一个核心氧化应激基因特征,该特征与小胶质细胞簇和浸润巨噬细胞之间共享的凝血和谷胱甘肽途径基因相关。Tox-seq 随后进行小胶质细胞高通量筛选和氧化应激基因网络分析,确定了具有调节谷胱甘肽作用的化合物 acivicin,它具有强大的治疗作用,可减少慢性和复发性多发性硬化症模型中的氧化应激和轴突损伤。因此,氧化应激转录组学确定了神经毒性 CNS 先天免疫细胞群,并且可能能够发现选择性神经保护策略。