Suppr超能文献

从原始平面波数据深度重建高质量超声图像:一项模拟和体内研究。

Deep reconstruction of high-quality ultrasound images from raw plane-wave data: A simulation and in vivo study.

机构信息

Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada.

Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada.

出版信息

Ultrasonics. 2022 Sep;125:106778. doi: 10.1016/j.ultras.2022.106778. Epub 2022 Jun 13.

Abstract

This paper presents a novel beamforming approach based on deep learning to get closer to the ideal Point Spread Function (PSF) in Plane-Wave Imaging (PWI). The proposed approach is designed to reconstruct a high-quality version of Tissue Reflectivity Function (TRF) from echo traces acquired by transducer elements using only a single plane-wave transmission. In this approach, first, a model for the TRF is introduced by setting the imaging PSF as an isotropic (i.e., circularly symmetric) 2D Gaussian kernel convolved with a cosine function. Then, a mapping function between the pre-beamformed Radio-Frequency (RF) channel data and the proposed output is constructed using deep learning. Network architecture contains multi-resolution decomposition and reconstruction using wavelet transform for effective recovery of high-frequency content of the desired output. We exploit step by step training from coarse (mean square error) to fine (ℓ) loss functions. The proposed method is trained on 1174 simulation ultrasound data with the ground-truth echogenicity map extracted from real photographic images. The performance of the trained network is evaluated on the publicly available simulation and in vivo test data without any further fine-tuning. Simulation test results show an improvement of 37.5% and 65.8% in terms of axial and lateral resolution as compared to Delay-And-Sum (DAS) results, respectively. The contrast is also improved by 33.7% in comparison to DAS. Furthermore, the reconstructed in vivo images confirm that the trained mapping function does not need any fine-tuning in the new domain. Therefore, the proposed approach maintains high resolution, contrast, and framerate simultaneously.

摘要

本文提出了一种基于深度学习的新型波束形成方法,以更接近平面波成像(PWI)中的理想点扩散函数(PSF)。该方法旨在仅通过单次平面波发射,从换能器元件获取的回波轨迹中重建高质量的组织反射函数(TRF)版本。在该方法中,首先通过将成像 PSF 设置为与余弦函数卷积的各向同性(即圆形对称)二维高斯核,引入了 TRF 的模型。然后,使用深度学习构建了预波束形成射频(RF)通道数据和建议输出之间的映射函数。网络架构包含多分辨率分解和重建,使用小波变换有效地恢复所需输出的高频内容。我们从粗(均方误差)到细(ℓ)损失函数逐步进行训练。该方法在具有从真实摄影图像提取的回声增强图的 1174 个模拟超声数据上进行训练,而无需进行任何微调。在没有进一步微调的情况下,在公开的模拟和体内测试数据上评估训练网络的性能。仿真测试结果表明,与延迟求和(DAS)结果相比,轴向和横向分辨率分别提高了 37.5%和 65.8%。与 DAS 相比,对比度也提高了 33.7%。此外,重建的体内图像证实,训练后的映射函数不需要在新域中进行任何微调。因此,该方法可以同时保持高分辨率、对比度和帧率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验