Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea.
Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea.
Ultrasonics. 2023 Sep;134:107096. doi: 10.1016/j.ultras.2023.107096. Epub 2023 Jun 29.
B-mode images undergo degradation in the boundary region because of the limited number of elements in the ultrasound probe. Herein, a deep learning-based extended aperture image reconstruction method is proposed to reconstruct a B-mode image with an enhanced boundary region. The proposed network can reconstruct an image using pre-beamformed raw data received from the half-aperture of the probe. To generate a high-quality training target without degradation in the boundary region, the target data were acquired using the full-aperture. Training data were acquired from an experimental study using a tissue-mimicking phantom, vascular phantom, and simulation of random point scatterers. Compared with plane-wave images from delay and sum beamforming, the proposed extended aperture image reconstruction method achieves improvement at the boundary region in terms of the multi-scale structure of similarity and peak signal-to-noise ratio by 8% and 4.10 dB in resolution evaluation phantom, 7% and 3.15 dB in contrast speckle phantom, and 5% and 3 dB in in vivo study of carotid artery imaging. The findings in this study prove the feasibility of a deep learning-based extended aperture image reconstruction method for boundary region improvement.
B 模式图像在边界区域会发生退化,因为超声探头中的元素数量有限。在此,提出了一种基于深度学习的扩展孔径图像重建方法,以重建具有增强边界区域的 B 模式图像。所提出的网络可以使用从探头半孔径接收的预波束形成原始数据来重建图像。为了在边界区域没有退化的情况下生成高质量的训练目标,使用全孔径采集目标数据。使用组织模拟体模、血管体模和随机点散射体模拟进行了实验研究以获取训练数据。与延迟求和波束形成的平面波图像相比,所提出的扩展孔径图像重建方法在分辨率评估体模中的多尺度结构相似性和峰值信噪比方面在边界区域分别提高了 8%和 4.10dB,在对比散斑体模中分别提高了 7%和 3.15dB,在颈动脉成像的体内研究中分别提高了 5%和 3dB。本研究的结果证明了基于深度学习的扩展孔径图像重建方法在改善边界区域方面的可行性。