Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.
Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.
Sci Rep. 2022 May 13;12(1):7924. doi: 10.1038/s41598-022-11997-w.
With modern management of primary liver cancer shifting towards non-invasive diagnostics, accurate tumor classification on medical imaging is increasingly critical for disease surveillance and appropriate targeting of therapy. Recent advancements in machine learning raise the possibility of automated tools that can accelerate workflow, enhance performance, and increase the accessibility of artificial intelligence to clinical researchers. We explore the use of an automated Tree-Based Optimization Tool that leverages a genetic programming algorithm for differentiation of the two common primary liver cancers on multiphasic MRI. Manual and automated analyses were performed to select an optimal machine learning model, with an accuracy of 73-75% (95% CI 0.59-0.85), sensitivity of 70-75% (95% CI 0.48-0.89), and specificity of 71-79% (95% CI 0.52-0.90) on manual optimization, and an accuracy of 73-75% (95% CI 0.59-0.85), sensitivity of 65-75% (95% CI 0.43-0.89) and specificity of 75-79% (95% CI 0.56-0.90) for automated machine learning. We found that automated machine learning performance was similar to that of manual optimization, and it could classify hepatocellular carcinoma and intrahepatic cholangiocarcinoma with an sensitivity and specificity comparable to that of radiologists. However, automated machine learning performance was poor on a subset of scans that met LI-RADS criteria for LR-M. Exploration of additional feature selection and classifier methods with automated machine learning to improve performance on LR-M cases as well as prospective validation in the clinical setting are needed prior to implementation.
随着原发性肝癌的现代管理转向非侵入性诊断,医学影像学上的准确肿瘤分类对于疾病监测和适当的治疗靶向越来越重要。机器学习的最新进展提出了使用自动化工具的可能性,这些工具可以加速工作流程、提高性能,并增加临床研究人员对人工智能的可及性。我们探讨了使用基于树的自动优化工具,该工具利用遗传编程算法对多期 MRI 上两种常见的原发性肝癌进行区分。进行了手动和自动分析,以选择最佳机器学习模型,手动优化的准确性为 73-75%(95%CI 0.59-0.85),敏感度为 70-75%(95%CI 0.48-0.89),特异性为 71-79%(95%CI 0.52-0.90),而自动机器学习的准确性为 73-75%(95%CI 0.59-0.85),敏感度为 65-75%(95%CI 0.43-0.89),特异性为 75-79%(95%CI 0.56-0.90)。我们发现,自动化机器学习的性能与手动优化相似,它可以对肝细胞癌和肝内胆管癌进行分类,其敏感性和特异性与放射科医生相当。然而,对于符合 LI-RADS 标准的 LR-M 的一部分扫描,自动化机器学习的性能较差。在实施之前,需要使用自动化机器学习来探索额外的特征选择和分类器方法,以提高 LR-M 病例的性能,并在临床环境中进行前瞻性验证。