Shin Ki Hoon, Seo Min-Kyu, Pak Sangyeon, Jang A-Rang, Sohn Jung Inn
Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Korea.
School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea.
Nanomaterials (Basel). 2022 Apr 19;12(9):1393. doi: 10.3390/nano12091393.
Van der Waals (vdW) heterostructures based on two-dimensional (2D) transition metal dichalcogenides (TMDCs), particularly WS/MoS heterostructures with type-II band alignments, are considered as ideal candidates for future functional optoelectronic applications owing to their efficient exciton dissociation and fast charge transfers. These physical properties of vdW heterostructures are mainly influenced by the interlayer coupling occurring at the interface. However, a comprehensive understanding of the interlayer coupling in vdW heterostructures is still lacking. Here, we present a detailed analysis of the low-frequency (LF) Raman modes, which are sensitive to interlayer coupling, in bilayers of MoS, WS, and WS/MoS heterostructures directly grown using chemical vapor deposition to avoid undesirable interfacial contamination and stacking mismatch effects between the monolayers. We clearly observe two distinguishable LF Raman modes, the interlayer in-plane shear and out-of-plane layer-breathing modes, which are dependent on the twisting angles and interface quality between the monolayers, in all the 2D bilayered structures, including the vdW heterostructure. In contrast, LF modes are not observed in the MoS and WS monolayers. These results indicate that our directly grown 2D bilayered TMDCs with a favorable stacking configuration and high-quality interface can induce strong interlayer couplings, leading to LF Raman modes.
基于二维(2D)过渡金属二硫属化物(TMDC)的范德华(vdW)异质结构,特别是具有II型能带排列的WS/MoS异质结构,由于其有效的激子解离和快速的电荷转移,被认为是未来功能光电器件应用的理想候选材料。vdW异质结构的这些物理性质主要受界面处发生的层间耦合影响。然而,目前仍缺乏对vdW异质结构中层间耦合的全面理解。在此,我们对低频(LF)拉曼模式进行了详细分析,这些模式对层间耦合敏感,分析对象是通过化学气相沉积直接生长的MoS、WS和WS/MoS异质结构双层,以避免单层之间出现不良的界面污染和堆叠失配效应。在所有二维双层结构中,包括vdW异质结构,我们清楚地观察到两种可区分的低频拉曼模式,即层间面内剪切模式和面外层呼吸模式,它们取决于单层之间的扭转角度和界面质量。相比之下,在MoS和WS单层中未观察到低频模式。这些结果表明,我们直接生长的具有良好堆叠构型和高质量界面的二维双层TMDC可以诱导强层间耦合,从而产生低频拉曼模式。