Zhang Kunyan, Guo Yunfan, Larson Daniel T, Zhu Ziyan, Fang Shiang, Kaxiras Efthimios, Kong Jing, Huang Shengxi
Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Nano. 2021 Sep 28;15(9):14394-14403. doi: 10.1021/acsnano.1c03779. Epub 2021 Aug 31.
The interlayer coupling in van der Waals heterostructures governs a variety of optical and electronic properties. The intrinsic dipole moment of Janus transition metal dichalcogenides (TMDs) offers a simple and versatile approach to tune the interlayer interactions. In this work, we demonstrate how the van der Waals interlayer coupling and charge transfer of Janus MoSSe/MoS heterobilayers can be tuned by the twist angle and interface composition. Specifically, the Janus heterostructures with a sulfur/sulfur (S/S) interface display stronger interlayer coupling than the heterostructures with a selenium/sulfur (Se/S) interface as shown by the low-frequency Raman modes. The differences in interlayer interactions are explained by the interlayer distance computed by density-functional theory (DFT). More intriguingly, the built-in electric field contributed by the charge density redistribution and interlayer coupling also play important roles in the interfacial charge transfer. Namely, the S/S and Se/S interfaces exhibit different levels of photoluminescence (PL) quenching of MoS A exciton, suggesting enhanced and reduced charge transfer at the S/S and Se/S interface, respectively. Our work demonstrates how the asymmetry of Janus TMDs can be used to tailor the interfacial interactions in van der Waals heterostructures.
范德华异质结构中的层间耦合决定了多种光学和电子性质。Janus过渡金属二硫属化物(TMDs)的固有偶极矩为调节层间相互作用提供了一种简单且通用的方法。在这项工作中,我们展示了如何通过扭转角和界面组成来调节Janus MoSSe/MoS异质双层的范德华层间耦合和电荷转移。具体而言,如低频拉曼模式所示,具有硫/硫(S/S)界面的Janus异质结构比具有硒/硫(Se/S)界面的异质结构表现出更强的层间耦合。层间相互作用的差异通过密度泛函理论(DFT)计算的层间距离来解释。更有趣的是,由电荷密度重新分布和层间耦合贡献的内建电场在界面电荷转移中也起着重要作用。也就是说,S/S和Se/S界面分别表现出不同程度的MoS A激子光致发光(PL)猝灭,表明S/S和Se/S界面处的电荷转移分别增强和减少。我们的工作展示了Janus TMDs的不对称性如何用于定制范德华异质结构中的界面相互作用。