Gong Hao, Bie Shiguang, Zhang Jian, Ke Xianbin, Wang Xiaoxing, Liang Jianquan, Wu Nian, Zhang Qichang, Luo Chuanxian, Jia Yanmin
NARI Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China.
State Grid Electric Power Research Institute Wuhan NARI Corporation, Wuhan 430074, China.
Nanomaterials (Basel). 2022 May 6;12(9):1571. doi: 10.3390/nano12091571.
The CoO electrode is a very promising material owing to its ultrahigh capacitance. Nevertheless, the electrochemical performance of CoO-based supercapacitors is practically confined by the limited active sites and poor conductivity of CoO. Herein, we provide a facile synthetic strategy of tightly anchoring CoO nanosheets to a carbon fiber conductive cloth (CoO@C) using the zeolitic imidazolate framework-67 (ZIF-67) sacrificial template via in situ impregnation and the pyrolysis method. Benefiting from the enhancement of conductivity and the increase in active sites, the binder-free porous CoO@C supercapacitor electrodes possess typical pseudocapacitance characteristics, with an acceptable specific capacitance of ~251 F/g at 1 A/g and long-term cycling stability (90% after cycling 5000 times at 3 A/g). Moreover, the asymmetric and flexible supercapacitor composed of CoO@C and activated carbon is further assembled, and it can drive the red LED for 6 min.
由于其超高电容,氧化钴(CoO)电极是一种非常有前景的材料。然而,基于CoO的超级电容器的电化学性能实际上受到CoO活性位点有限和导电性差的限制。在此,我们通过原位浸渍和热解方法,使用沸石咪唑酯骨架-67(ZIF-67)牺牲模板,提供了一种将CoO纳米片紧密锚定在碳纤维导电布(CoO@C)上的简便合成策略。受益于导电性的增强和活性位点的增加,无粘结剂的多孔CoO@C超级电容器电极具有典型的赝电容特性,在1 A/g时具有约251 F/g的可接受比电容和长期循环稳定性(在3 A/g下循环5000次后为90%)。此外,进一步组装了由CoO@C和活性炭组成的不对称柔性超级电容器,它可以驱动红色发光二极管6分钟。