Inorganic Chemistry and Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
Chem Soc Rev. 2020 Jun 7;49(11):3348-3422. doi: 10.1039/c9cs00871c. Epub 2020 Apr 6.
Owing to their large ratio of surface area to mass and volume, metal-organic frameworks and porous carbons have revolutionized many applications that rely on chemical and physical interactions at surfaces. However, a major challenge today is to shape these porous materials to translate their enhanced performance from the laboratory into macroscopic real-world applications. In this review, we give a comprehensive overview of how the precise morphology control of metal oxides can be transferred to metal-organic frameworks and porous carbon materials. As such, tailored material structures can be designed in 0D, 1D, 2D, and 3D with considerable implications for applications such as in energy storage, catalysis and nanomedicine. Therefore, we predict that major research advances in morphology control of metal-organic frameworks and porous carbons will facilitate the use of these materials in addressing major needs of the society, especially the grand challenges of energy, health, and environment.
由于其表面积与质量和体积的比例较大,金属-有机骨架和多孔碳极大地推动了许多依赖于表面化学和物理相互作用的应用。然而,目前的一个主要挑战是将这些多孔材料成型,以便将其在实验室中增强的性能转化为宏观的实际应用。在这篇综述中,我们全面概述了如何将金属氧化物的精确形态控制转移到金属-有机骨架和多孔碳材料中。因此,可以设计出具有 0D、1D、2D 和 3D 结构的定制材料,这对储能、催化和纳米医学等应用具有重要意义。因此,我们预测金属-有机骨架和多孔碳形态控制方面的重大研究进展将有助于这些材料在解决社会的主要需求,特别是能源、健康和环境方面的重大挑战中的应用。