Nawar Mohamed F, El-Daoushy Alaa F, Madkour Metwally, Türler Andreas
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Faculty of Science, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
Radioactive Isotopes and Generators Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt.
Nanomaterials (Basel). 2022 May 7;12(9):1587. doi: 10.3390/nano12091587.
Mo/Tc generators play a significant role in supplying Tc for diagnostic interventions in nuclear medicine. However, the applicability of using low specific activity (LSA) Mo asks for sorbents with high sorption capacity. Herein, this study aims to evaluate the sorption behavior of LSA Mo towards several CeO nano-sorbents developed in our laboratory. These nanomaterials were prepared by wet chemical precipitation (CP) and hydrothermal (HT) approaches. Then, they were characterized using XRD, BET, FE-SEM, and zeta potential measurements. Additionally, we evaluated the sorption profile of carrier-added (CA) Mo onto each material under different experimental parameters. These parameters include pH, initial concentration of molybdate solution, contact time, and temperature. Furthermore, the maximum sorption capacities were evaluated. The results reveal that out of the synthesized CeO nanoparticles (NPs) materials, the sorption capacity of HT-1 and CP-2 reach 192 ± 10 and 184 ± 12 mg Mo·g, respectively. For both materials, the sorption kinetics and isotherm data agree with the Elovich and Freundlich models, respectively. Moreover, the diffusion study demonstrates that the sorption processes can be described by pore diffusion (for HT-synthesis route 1) and film diffusion (for CP-synthesis route 2). Furthermore, the thermodynamic parameters indicate that the Mo sorption onto both materials is a spontaneous and endothermic process. Consequently, it appears that HT-1 and CP-2 have favorable sorption profiles and high sorption capacities for CA-Mo. Therefore, they are potential candidates for producing a Mo/Tc radionuclide generator by using LSA Mo.
钼/锝发生器在为核医学诊断干预提供锝方面发挥着重要作用。然而,使用低比活度(LSA)钼的适用性要求吸附剂具有高吸附容量。在此,本研究旨在评估LSA钼对我们实验室开发的几种CeO纳米吸附剂的吸附行为。这些纳米材料通过湿化学沉淀(CP)和水热(HT)方法制备。然后,使用X射线衍射(XRD)、比表面积分析仪(BET)、场发射扫描电子显微镜(FE-SEM)和zeta电位测量对它们进行表征。此外,我们评估了在不同实验参数下,添加载体(CA)的钼在每种材料上的吸附情况。这些参数包括pH值、钼酸盐溶液的初始浓度、接触时间和温度。此外,还评估了最大吸附容量。结果表明,在合成的CeO纳米颗粒(NPs)材料中,HT-1和CP-2的吸附容量分别达到192±10和184±12 mg Mo·g⁻¹。对于这两种材料,吸附动力学和等温线数据分别符合埃洛维奇模型和弗伦德利希模型。此外,扩散研究表明,吸附过程可以用孔扩散(对于HT合成路线1)和膜扩散(对于CP合成路线2)来描述。此外,热力学参数表明,钼在这两种材料上的吸附是一个自发的吸热过程。因此,HT-1和CP-2似乎对CA-钼具有良好的吸附情况和高吸附容量。因此,它们是使用LSA钼生产钼/锝放射性核素发生器的潜在候选材料。