Martini Petra, Boschi Alessandra, Cicoria Gianfranco, Zagni Federico, Corazza Andrea, Uccelli Licia, Pasquali Micòl, Pupillo Gaia, Marengo Mario, Loriggiola Massimo, Skliarova Hanna, Mou Liliana, Cisternino Sara, Carturan Sara, Melendez-Alafort Laura, Uzunov Nikolay M, Bello Michele, Alvarez Carlos Rossi, Esposito Juan, Duatti Adriano
Legnaro Laboratories, Italian National Institute for Nuclear Physics (INFN), Legnaro, Padua, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
Appl Radiat Isot. 2018 Sep;139:325-331. doi: 10.1016/j.apradiso.2018.05.033. Epub 2018 May 30.
In the last years, the technology for producing the important medical radionuclide technetium-99m by cyclotrons has become sufficiently mature to justify its introduction as an alternative source of the starting precursor [Tc][TcO] ubiquitously employed for the production of Tc-radiopharmaceuticals in hospitals. These technologies make use almost exclusively of the nuclear reaction Mo(p,2n)Tc that allows direct production of Tc-99m. In this study, it is conjectured that this alternative production route will not replace the current supply chain based on the distribution of Mo/Tc generators, but could become a convenient emergency source of Tc-99m only for in-house hospitals equipped with a conventional, low-energy, medical cyclotron. On this ground, an outline of the essential steps that should be implemented for setting up a hospital radiopharmacy aimed at the occasional production of Tc-99m by a small cyclotron is discussed. These include (1) target production, (2) irradiation conditions, (3) separation/purification procedures, (4) terminal sterilization, (5) quality control, and (6) Mo-100 recovery. To address these issues, a comprehensive technology for cyclotron-production of Tc-99m, developed at the Legnaro National Laboratories of the Italian National Institute of Nuclear Physics (LNL-INFN), will be used as a reference example.
在过去几年中,通过回旋加速器生产重要医用放射性核素锝-99m的技术已足够成熟,足以证明将其作为医院中普遍用于生产锝放射性药物的起始前体[Tc][TcO]的替代来源引入是合理的。这些技术几乎完全利用核反应Mo(p,2n)Tc来直接生产锝-99m。在本研究中,推测这种替代生产路线不会取代基于钼/锝发生器分发的当前供应链,但仅对于配备传统低能医用回旋加速器的医院而言,它可能成为一种方便的锝-99m应急来源。基于此,本文讨论了为建立一家旨在通过小型回旋加速器偶尔生产锝-99m的医院放射性药房而应实施的基本步骤概述。这些步骤包括:(1) 靶材生产;(2) 辐照条件;(3) 分离/纯化程序;(4) 终端灭菌;(5) 质量控制;以及(6) 钼-100回收。为解决这些问题,将以意大利国家核物理研究所莱尼亚罗国家实验室(LNL-INFN)开发的锝-99m回旋加速器生产综合技术作为参考示例。