Suppr超能文献

利用基于位置的社交媒体数据探索人类活动、COVID-19 发病率和高风险地区之间的关系:武汉大流行早期阶段的相关知识。

Exploring the Relationship among Human Activities, COVID-19 Morbidity, and At-Risk Areas Using Location-Based Social Media Data: Knowledge about the Early Pandemic Stage in Wuhan.

机构信息

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China.

National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan 430079, China.

出版信息

Int J Environ Res Public Health. 2022 May 27;19(11):6523. doi: 10.3390/ijerph19116523.

Abstract

It is significant to explore the morbidity patterns and at-risk areas of the COVID-19 outbreak in megacities. In this paper, we studied the relationship among human activities, morbidity patterns, and at-risk areas in Wuhan City. First, we excavated the activity patterns from Sina Weibo check-in data during the early COVID-19 pandemic stage (December 2019~January 2020) in Wuhan. We considered human-activity patterns and related demographic information as the COVID-19 influencing determinants, and we used spatial regression models to evaluate the relationships between COVID-19 morbidity and the related factors. Furthermore, we traced Weibo users' check-in trajectories to characterize the spatial interaction between high-morbidity residential areas and activity venues with POI (point of interest) sites, and we located a series of potential at-risk places in Wuhan. The results provide statistical evidence regarding the utility of human activity and demographic factors for the determination of COVID-19 morbidity patterns in the early pandemic stage in Wuhan. The spatial interaction revealed a general transmission pattern in Wuhan and determined the high-risk areas of COVID-19 transmission. This article explores the human-activity characteristics from social media check-in data and studies how human activities played a role in COVID-19 transmission in Wuhan. From that, we provide new insights for scientific prevention and control of COVID-19.

摘要

探索特大城市 COVID-19 疫情的发病模式和高危地区具有重要意义。在本文中,我们研究了武汉市人类活动、发病模式和高危地区之间的关系。首先,我们从武汉 COVID-19 大流行早期(2019 年 12 月至 2020 年 1 月)的新浪微博签到数据中挖掘了活动模式。我们将人类活动模式和相关人口统计信息视为 COVID-19 的影响因素,并使用空间回归模型评估 COVID-19 发病率与相关因素之间的关系。此外,我们跟踪微博用户的签到轨迹,以描述高发病率居住地区和活动场所与 POI(兴趣点)之间的空间相互作用,并确定了武汉市的一系列潜在高危地区。研究结果为利用人类活动和人口统计因素确定 COVID-19 发病模式提供了统计证据,揭示了武汉大流行早期的发病模式。空间相互作用揭示了武汉的一般传播模式,并确定了 COVID-19 传播的高风险地区。本文从社交媒体签到数据中探索了人类活动特征,并研究了人类活动在武汉 COVID-19 传播中的作用。由此,我们为 COVID-19 的科学防控提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d28/9180261/3eb408f34d39/ijerph-19-06523-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验