Suppr超能文献

肿瘤的栖息地成像能够对治疗反应进行高置信度的亚区域评估。

Habitat Imaging of Tumors Enables High Confidence Sub-Regional Assessment of Response to Therapy.

作者信息

Tar Paul David, Thacker Neil A, Babur Muhammad, Lipowska-Bhalla Grazyna, Cheung Susan, Little Ross A, Williams Kaye J, O'Connor James P B

机构信息

Division of Cancer Sciences, University of Manchester, Manchester M13 9PT, UK.

Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester M13 9PT, UK.

出版信息

Cancers (Basel). 2022 Apr 26;14(9):2159. doi: 10.3390/cancers14092159.

Abstract

Imaging biomarkers are used in therapy development to identify and quantify therapeutic response. In oncology, use of MRI, PET and other imaging methods can be complicated by spatially complex and heterogeneous tumor micro-environments, non-Gaussian data and small sample sizes. Linear Poisson Modelling (LPM) enables analysis of complex data that is quantitative and can operate in small data domains. We performed experiments in 5 mouse models to evaluate the ability of LPM to identify responding tumor habitats across a range of radiation and targeted drug therapies. We tested if LPM could identify differential biological response rates. We calculated the theoretical sample size constraints for applying LPM to new data. We then performed a co-clinical trial using small data to test if LPM could detect multiple therapeutics with both improved power and reduced animal numbers compared to conventional -test approaches. Our data showed that LPM greatly increased the amount of information extracted from diffusion-weighted imaging, compared to cohort -tests. LPM distinguished biological response rates between Calu6 tumors treated with 3 different therapies and between Calu6 tumors and 4 other xenograft models treated with radiotherapy. A simulated co-clinical trial using real data detected high precision per-tumor treatment effects in as few as 3 mice per cohort, with -values as low as 1 in 10,000. These findings provide a route to simultaneously improve the information derived from preclinical imaging while reducing and refining the use of animals in cancer research.

摘要

成像生物标志物在治疗开发中用于识别和量化治疗反应。在肿瘤学中,MRI、PET和其他成像方法的应用可能会因肿瘤微环境在空间上复杂且异质性、数据非高斯分布以及样本量小而变得复杂。线性泊松建模(LPM)能够分析复杂的定量数据,并且可以在小数据域中运行。我们在5种小鼠模型中进行了实验,以评估LPM在一系列放射治疗和靶向药物治疗中识别有反应的肿瘤栖息地的能力。我们测试了LPM是否能够识别不同的生物学反应率。我们计算了将LPM应用于新数据时的理论样本量限制。然后,我们使用小数据进行了一项联合临床试验,以测试与传统检验方法相比,LPM是否能够以更高的效能和更少的动物数量检测多种治疗方法。我们的数据表明,与队列检验相比,LPM大大增加了从扩散加权成像中提取的信息量。LPM区分了用3种不同疗法治疗的Calu6肿瘤之间以及用放射治疗的Calu6肿瘤与其他4种异种移植模型之间的生物学反应率。一项使用真实数据的模拟联合临床试验在每个队列仅3只小鼠中检测到了高精度的肿瘤特异性治疗效果,P值低至万分之一。这些发现为同时改善从临床前成像中获得的信息,同时减少和优化癌症研究中动物的使用提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec88/9101368/c69625d05a99/cancers-14-02159-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验