Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan.
Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
Nutrients. 2022 Apr 27;14(9):1829. doi: 10.3390/nu14091829.
There is a great need for a diagnostic tool using simple clinical information collected from patients to diagnose uric acid (UA) stones in nephrolithiasis. We built a predictive model making use of machine learning (ML) methodologies entering simple parameters easily obtained at the initial clinical visit. Socio-demographic, health, and clinical data from two cohorts (A and B), both diagnosed with nephrolithiasis, one between 2012 and 2016 and the other between June and December 2020, were collected before nephrolithiasis treatment. A ML-based model for predicting UA stones in nephrolithiasis was developed using eight simple parameters-sex, age, gout, diabetes mellitus, body mass index, estimated glomerular filtration rate, bacteriuria, and urine pH. Data from Cohort A were used for model training and validation (ratio 3:2), while data from Cohort B were used only for validation. One hundred and forty-six (13.3%) out of 1098 patients in Cohort A and 3 (4.23%) out of 71 patients in Cohort B had pure UA stones. For Cohort A, our model achieved a validation AUC (area under ROC curve) of 0.842, with 0.8475 sensitivity and 0.748 specificity. For Cohort B, our model achieved 0.936 AUC, with 1.0 sensitivity, and 0.912 specificity. This ML-based model provides a convenient and reliable method for diagnosing urolithiasis. Using only eight readily available clinical parameters, including information about metabolic disorder and obesity, it distinguished pure uric acid stones from other stones before treatment.
在肾结石患者中,需要一种利用简单的临床信息进行诊断的工具来诊断尿酸(UA)结石。我们构建了一个预测模型,利用机器学习(ML)方法,输入在初始临床就诊时容易获得的简单参数。从两个队列(A 和 B)收集了肾结石患者的社会人口统计学、健康和临床数据,这些患者都被诊断为肾结石,一个队列在 2012 年至 2016 年之间,另一个队列在 2020 年 6 月至 12 月之间。在肾结石治疗前收集了社会人口统计学、健康和临床数据。使用 8 个简单参数(性别、年龄、痛风、糖尿病、体重指数、估算肾小球滤过率、菌尿和尿液 pH)建立了用于预测肾结石中 UA 结石的基于 ML 的模型。队列 A 的数据用于模型训练和验证(比例为 3:2),而队列 B 的数据仅用于验证。队列 A 中有 146 名(13.3%)1098 名患者和队列 B 中有 3 名(4.23%)71 名患者患有纯 UA 结石。对于队列 A,我们的模型在验证时 AUC(ROC 曲线下面积)为 0.842,敏感性为 0.8475,特异性为 0.748。对于队列 B,我们的模型在验证时 AUC 为 0.936,敏感性为 1.0,特异性为 0.912。这个基于 ML 的模型为诊断尿石症提供了一种方便可靠的方法。该模型仅使用 8 个易于获得的临床参数,包括代谢紊乱和肥胖信息,在治疗前将纯尿酸结石与其他结石区分开来。