Suppr超能文献

基于长短时记忆神经网络和改进粒子群优化的中国上海市城市固体废物生成建模与情景分析。

Long short-term memory neural network and improved particle swarm optimization-based modeling and scenario analysis for municipal solid waste generation in Shanghai, China.

机构信息

School of Economics and Management, China University of Geosciences, Wuhan, 430074, China.

Nanomedicine Lab, Université de Bourgogne Franche-Comté, UTBM, 90010, Belfort, France.

出版信息

Environ Sci Pollut Res Int. 2022 Oct;29(46):69472-69490. doi: 10.1007/s11356-022-20438-0. Epub 2022 May 14.

Abstract

Accurate estimations of municipal solid waste (MSW) generation are vital to effective MSW management systems. While various single-point estimation approaches have been developed, the non-linearity and multiple site-specific influencing factors associated with MSW management systems make it challenging to forecast MSW generation quantities precisely. To address these concerns, this study developed a two-stage modeling and scenario analysis procedure for MSW generation and taking Shanghai as a test case demonstrated its viability. In the first stage, nine influencing factors were selected, and a hybrid novel forecasting model based on a long short-term memory neural network and an improved particle swarm optimization (IPSO-LSTM) was proposed for the forecasting of the MSW generation quantities, after which actual Shanghai data from 1980 to 2019 were used to test the performance. In the second stage, the future influencing variable values in different scenarios were predicted using an improved grey model, after which the predicted Shanghai MSW generation quantities from 2025 to 2035 were evaluated under various scenarios. It was found that (1) the proposed IPSO-LSTM had higher accuracy than the benchmark models; (2) the MSW generation quantities are expected to respectively increase to 9.971, 9.684, and 9.090 million tons by 2025 and 11.402, 11.285, and 10.240 by 2035 under the low, benchmark, and high scenarios; and (3) the MSW generation differences between the high and medium scenarios were decreasing.

摘要

准确估算城市固体废物 (MSW) 的产生量对于有效的 MSW 管理系统至关重要。虽然已经开发出各种单点估计方法,但与 MSW 管理系统相关的非线性和多个特定于地点的影响因素使得精确预测 MSW 产生量具有挑战性。为了解决这些问题,本研究提出了一种用于 MSW 产生的两阶段建模和情景分析程序,并以上海为例进行了可行性验证。在第一阶段,选择了九个影响因素,并提出了一种基于长短期记忆神经网络和改进粒子群优化(IPSO-LSTM)的混合新型预测模型,用于预测 MSW 产生量,然后使用 1980 年至 2019 年的实际上海数据来测试其性能。在第二阶段,使用改进的灰色模型预测不同情景下未来的影响变量值,然后评估各种情景下 2025 年至 2035 年上海 MSW 产生量的预测值。结果发现:(1) 所提出的 IPSO-LSTM 比基准模型具有更高的准确性;(2) 在低、基准和高情景下,到 2025 年,MSW 产生量预计分别增加到 997.1、968.4 和 909.0 百万吨,到 2035 年分别增加到 1140.2、1128.5 和 1024.0 百万吨;(3) 高情景和中情景之间的 MSW 产生量差异在减小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac40/9107017/f3dc5a2f3ffc/11356_2022_20438_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验