Suppr超能文献

基于增强磁共振成像的脑肿瘤分类与新型Pix2pix生成对抗网络增强框架

Enhanced MRI-based brain tumour classification with a novel Pix2pix generative adversarial network augmentation framework.

作者信息

Onakpojeruo Efe Precious, Mustapha Mubarak Taiwo, Ozsahin Dilber Uzun, Ozsahin Ilker

机构信息

Operational Research Centre in Healthcare, Near East University, Nicosia 99138, Turkey.

Department of Biomedical Engineering, Near East University, Nicosia 99138, Turkey.

出版信息

Brain Commun. 2024 Oct 24;6(6):fcae372. doi: 10.1093/braincomms/fcae372. eCollection 2024.

Abstract

The scarcity of medical imaging datasets and privacy concerns pose significant challenges in artificial intelligence-based disease prediction. This poses major concerns to patient confidentiality as there are now tools capable of extracting patient information by merely analysing patient's imaging data. To address this, we propose the use of synthetic data generated by generative adversarial networks as a solution. Our study pioneers the utilisation of a novel Pix2Pix generative adversarial network model, specifically the 'image-to-image translation with conditional adversarial networks,' to generate synthetic datasets for brain tumour classification. We focus on classifying four tumour types: glioma, meningioma, pituitary and healthy. We introduce a novel conditional deep convolutional neural network architecture, developed from convolutional neural network architectures, to process the pre-processed generated synthetic datasets and the original datasets obtained from the Kaggle repository. Our evaluation metrics demonstrate the conditional deep convolutional neural network model's high performance with synthetic images, achieving an accuracy of 86%. Comparative analysis with state-of-the-art models such as Residual Network50, Visual Geometry Group 16, Visual Geometry Group 19 and InceptionV3 highlights the superior performance of our conditional deep convolutional neural network model in brain tumour detection, diagnosis and classification. Our findings underscore the efficacy of our novel Pix2Pix generative adversarial network augmentation technique in creating synthetic datasets for accurate brain tumour classification, offering a promising avenue for improved disease prediction and treatment planning.

摘要

医学影像数据集的稀缺以及隐私问题给基于人工智能的疾病预测带来了重大挑战。这对患者隐私构成了重大担忧,因为现在有工具仅通过分析患者的影像数据就能提取患者信息。为了解决这个问题,我们建议使用生成对抗网络生成的合成数据作为解决方案。我们的研究率先利用一种新颖的Pix2Pix生成对抗网络模型,特别是“带有条件对抗网络的图像到图像翻译”,来生成用于脑肿瘤分类的合成数据集。我们专注于对四种肿瘤类型进行分类:神经胶质瘤、脑膜瘤、垂体瘤和健康状态。我们引入了一种新颖的条件深度卷积神经网络架构,它是从卷积神经网络架构发展而来的,用于处理预处理后的生成合成数据集以及从Kaggle存储库获得的原始数据集。我们的评估指标表明,条件深度卷积神经网络模型对合成图像具有高性能,准确率达到86%。与诸如残差网络50、视觉几何组16、视觉几何组19和InceptionV3等先进模型的对比分析突出了我们的条件深度卷积神经网络模型在脑肿瘤检测、诊断和分类方面的卓越性能。我们的研究结果强调了我们新颖的Pix2Pix生成对抗网络增强技术在创建用于准确脑肿瘤分类的合成数据集方面的有效性,为改进疾病预测和治疗规划提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386d/11528519/4a91a32b86f9/fcae372_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验