Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong.
Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong.
Contemp Clin Trials. 2022 Jul;118:106787. doi: 10.1016/j.cct.2022.106787. Epub 2022 May 12.
Recurrent event data analysis plays an important role in many fields, e.g., medicine, social science, and economics. While the existing approaches under the proportional rates or mean model yield poor performance when the underlying model is misspecified, we propose a novel model-free approach by introducing a lower bound on the concordance index (C-Index). We develop an estimation method through deriving a continuous lower bound on the C-Index based on the log-sigmoid function and also provide a variable selection procedure in high dimensional settings. Under both low and high dimensional settings, simulation results show that the proposed methods outperform the gamma frailty recurrent event model when the proportional mean assumption is violated. Moreover, an application to the hospital readmission dataset shows results in line with previous studies and a higher C-Index value further assures model decency.
重复事件数据分析在许多领域都发挥着重要作用,例如医学、社会科学和经济学。虽然在基础模型指定错误时,现有基于比例率或均数模型的方法表现不佳,但我们通过引入一致性指数(C-Index)的下限,提出了一种新的无模型方法。我们通过基于对数 - 双曲正弦函数推导出 C-Index 的连续下限,开发了一种估计方法,并且在高维环境中还提供了一种变量选择过程。在低维和高维环境下,模拟结果表明,当违反比例均数假设时,所提出的方法优于伽马脆弱性重复事件模型。此外,对医院再入院数据集的应用表明结果与先前的研究一致,并且更高的 C-Index 值进一步确保了模型的合理性。