School of Statistics and Data Science & Key Laboratory of Pure Mathematics and Combinatorics, Nankai University, Tianjin, People's Republic of China.
Department of Mathematical Sciences, University of Texas, El Paso, Texas.
Biometrics. 2020 Dec;76(4):1330-1339. doi: 10.1111/biom.13242. Epub 2020 Mar 3.
Recurrent event data are commonly encountered in biomedical studies. In many situations, they are subject to an informative terminal event, for example, death. Joint modeling of recurrent and terminal events has attracted substantial recent research interests. On the other hand, there may exist a large number of covariates in such data. How to conduct variable selection for joint frailty proportional hazards models has become a challenge in practical data analysis. We tackle this issue on the basis of the "minimum approximated information criterion" method. The proposed method can be conveniently implemented in SAS Proc NLMIXED for commonly used frailty distributions. Its finite-sample behavior is evaluated through simulation studies. We apply the proposed method to model recurrent opportunistic diseases in the presence of death in an AIDS study.
在生物医学研究中,经常会遇到重复事件数据。在许多情况下,它们会受到信息终端事件的影响,例如死亡。重复事件和终端事件的联合建模引起了最近大量的研究兴趣。另一方面,此类数据中可能存在大量协变量。如何对联合脆弱性比例风险模型进行变量选择已成为实际数据分析中的一个挑战。我们基于“最小近似信息准则”方法来解决这个问题。所提出的方法可以方便地在常用脆弱性分布的 SAS Proc NLMIXED 中实现。通过模拟研究评估了其有限样本行为。我们将所提出的方法应用于 AIDS 研究中存在死亡的复发性机会性疾病模型中。