Suppr超能文献

一种基于新型文本轨迹数据的 COVID-19 个体感染风险估计方法。

A novel textual track-data-based approach for estimating individual infection risk of COVID-19.

机构信息

School of Management Science and Engineering, Central University of Finance and Economics, Beijing, P. R. China.

出版信息

Risk Anal. 2023 Jan;43(1):156-182. doi: 10.1111/risa.13944. Epub 2022 May 14.

Abstract

With the recurrence of infectious diseases caused by coronaviruses, which pose a significant threat to human health, there is an unprecedented urgency to devise an effective method to identify and assess who is most at risk of contracting these diseases. China has successfully controlled the spread of COVID-19 through the disclosure of track data belonging to diagnosed patients. This paper proposes a novel textual track-data-based approach for individual infection risk measurement. The proposed approach is divided into three steps. First, track features are extracted from track data to build a general portrait of COVID-19 patients. Then, based on the extracted track features, we construct an infection risk indicator system to calculate the infection risk index (IRI). Finally, individuals are divided into different infection risk categories based on the IRI values. By doing so, the proposed approach can determine the risk of an individual contracting COVID-19, which facilitates the identification of high-risk populations. Thus, the proposed approach can be used for risk prevention and control of COVID-19. In the empirical analysis, we comprehensively collected 9455 pieces of track data from 20 January 2020 to 30 July 2020, covering 32 provinces/provincial municipalities in China. The empirical results show that the Chinese COVID-19 patients have six key features that indicate infection risk: place, region, close-contact person, contact manner, travel mode, and symptom. The IRI values for all 9455 patients vary from 0 to 43.19. Individuals are classified into the following five infection risk categories: low, moderate-low, moderate, moderate-high, and high risk.

摘要

随着冠状病毒引起的传染病的再次发生,对人类健康构成了前所未有的威胁,因此,人们迫切需要设计一种有效的方法来识别和评估哪些人最容易感染这些疾病。中国通过公开确诊患者的轨迹数据成功控制了 COVID-19 的传播。本文提出了一种基于文本轨迹数据的个体感染风险测量的新方法。该方法分为三个步骤。首先,从轨迹数据中提取轨迹特征,构建 COVID-19 患者的一般画像。然后,基于提取的轨迹特征,构建感染风险指标体系,计算感染风险指数(IRI)。最后,根据 IRI 值将个体分为不同的感染风险类别。通过这种方式,可以确定个体感染 COVID-19 的风险,从而识别高风险人群。因此,该方法可用于 COVID-19 的风险预防和控制。在实证分析中,我们综合收集了 2020 年 1 月 20 日至 2020 年 7 月 30 日的 9455 条轨迹数据,涵盖了中国 32 个省/直辖市。实证结果表明,中国 COVID-19 患者有六个关键特征表明感染风险:地点、地区、密切接触者、接触方式、旅行方式和症状。9455 名患者的 IRI 值从 0 到 43.19 不等。个体分为以下五个感染风险类别:低、中低、中、中高和高风险。

相似文献

1
A novel textual track-data-based approach for estimating individual infection risk of COVID-19.
Risk Anal. 2023 Jan;43(1):156-182. doi: 10.1111/risa.13944. Epub 2022 May 14.
5
Universal screening for SARS-CoV-2 infection: a rapid review.
Cochrane Database Syst Rev. 2020 Sep 15;9(9):CD013718. doi: 10.1002/14651858.CD013718.
6
Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
Cochrane Database Syst Rev. 2020 Oct 5;10:CD013717. doi: 10.1002/14651858.CD013717.
7
International travel-related control measures to contain the COVID-19 pandemic: a rapid review.
Cochrane Database Syst Rev. 2021 Mar 25;3(3):CD013717. doi: 10.1002/14651858.CD013717.pub2.
9
SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study.
Lancet Infect Dis. 2021 Mar;21(3):333-343. doi: 10.1016/S1473-3099(20)30833-1. Epub 2020 Nov 2.
10
Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review.
Cochrane Database Syst Rev. 2020 Sep 15;9(9):CD013574. doi: 10.1002/14651858.CD013574.pub2.

本文引用的文献

1
JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook.
J Urban Econ. 2022 Jan;127:103314. doi: 10.1016/j.jue.2020.103314. Epub 2021 Jan 9.
2
Airport Exposure to Lightning Strike Hazard in the Contiguous United States.
Risk Anal. 2021 Aug;41(8):1323-1344. doi: 10.1111/risa.13630. Epub 2020 Nov 10.
3
Understanding COVID-19 transmission, health impacts and mitigation: timely social distancing is the key.
Environ Dev Sustain. 2021;23(5):6681-6697. doi: 10.1007/s10668-020-00884-x. Epub 2020 Jul 18.
4
Factors associated with COVID-19-related death using OpenSAFELY.
Nature. 2020 Aug;584(7821):430-436. doi: 10.1038/s41586-020-2521-4. Epub 2020 Jul 8.
5
A Study of Risk Relevance Reasoning Based on a Context Ontology of Railway Accidents.
Risk Anal. 2020 Aug;40(8):1589-1611. doi: 10.1111/risa.13506. Epub 2020 May 25.
6
Early forecasting of the potential risk zones of COVID-19 in China's megacities.
Sci Total Environ. 2020 Aug 10;729:138995. doi: 10.1016/j.scitotenv.2020.138995. Epub 2020 Apr 26.
7
Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.
Int J Antimicrob Agents. 2020 Jul;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949. Epub 2020 Mar 20.
8
Estimating Risk for Death from Coronavirus Disease, China, January-February 2020.
Emerg Infect Dis. 2020 Jun;26(6):1251-1256. doi: 10.3201/eid2606.200233. Epub 2020 Jun 17.
9
Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China.
Cell Host Microbe. 2020 Mar 11;27(3):325-328. doi: 10.1016/j.chom.2020.02.001. Epub 2020 Feb 7.
10
Deep Learning Models for Health and Safety Risk Prediction in Power Infrastructure Projects.
Risk Anal. 2020 Oct;40(10):2019-2039. doi: 10.1111/risa.13425. Epub 2019 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验