Suppr超能文献

用于脑脊液TMT蛋白质组学分析以鉴定阿尔茨海默病生物标志物的优化样品制备和数据分析。

Optimized sample preparation and data analysis for TMT proteomic analysis of cerebrospinal fluid applied to the identification of Alzheimer's disease biomarkers.

作者信息

Weiner Sophia, Sauer Mathias, Visser Pieter Jelle, Tijms Betty M, Vorontsov Egor, Blennow Kaj, Zetterberg Henrik, Gobom Johan

机构信息

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.

Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden.

出版信息

Clin Proteomics. 2022 May 14;19(1):13. doi: 10.1186/s12014-022-09354-0.

Abstract

BACKGROUND

Cerebrospinal fluid (CSF) is an important biofluid for biomarkers of neurodegenerative diseases such as Alzheimer's disease (AD). By employing tandem mass tag (TMT) proteomics, thousands of proteins can be quantified simultaneously in large cohorts, making it a powerful tool for biomarker discovery. However, TMT proteomics in CSF is associated with analytical challenges regarding sample preparation and data processing. In this study we address those challenges ranging from data normalization over sample preparation to sample analysis.

METHOD

Using liquid chromatography coupled to mass-spectrometry (LC-MS), we analyzed TMT multiplex samples consisting of either identical or individual CSF samples, evaluated quantification accuracy and tested the performance of different data normalization approaches. We examined MS2 and MS3 acquisition strategies regarding accuracy of quantification and performed a comparative evaluation of filter-assisted sample preparation (FASP) and an in-solution protocol. Finally, four normalization approaches (median, quantile, Total Peptide Amount, TAMPOR) were applied to the previously published European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) dataset.

RESULTS

The correlation of measured TMT reporter ratios with spiked-in standard peptide amounts was significantly lower for TMT multiplexes composed of individual CSF samples compared with those composed of aliquots of a single CSF pool, demonstrating that the heterogeneous CSF sample composition influences TMT quantitation. Comparison of TMT reporter normalization methods showed that the correlation could be improved by applying median- and quantile-based normalization. The slope was improved by acquiring data in MS3 mode, albeit at the expense of a 29% decrease in the number of identified proteins. FASP and in-solution sample preparation of CSF samples showed a 73% overlap in identified proteins. Finally, using optimized data normalization, we present a list of 64 biomarker candidates (clinical AD vs. controls, p < 0.01) identified in the EMIF-AD cohort.

CONCLUSION

We have evaluated several analytical aspects of TMT proteomics in CSF. The results of our study provide practical guidelines to improve the accuracy of quantification and aid in the design of sample preparation and analytical protocol. The AD biomarker list extracted from the EMIF-AD cohort can provide a valuable basis for future biomarker studies and help elucidate pathogenic mechanisms in AD.

摘要

背景

脑脊液(CSF)是用于阿尔茨海默病(AD)等神经退行性疾病生物标志物研究的重要生物流体。通过采用串联质谱标签(TMT)蛋白质组学技术,可在大型队列中同时对数千种蛋白质进行定量分析,使其成为生物标志物发现的有力工具。然而,脑脊液中的TMT蛋白质组学在样品制备和数据处理方面存在分析挑战。在本研究中,我们解决了从数据归一化到样品制备再到样品分析等一系列挑战。

方法

使用液相色谱-质谱联用(LC-MS)技术,我们分析了由相同或个体脑脊液样本组成的TMT多重样本,评估了定量准确性,并测试了不同数据归一化方法的性能。我们研究了MS²和MS³采集策略对定量准确性的影响,并对滤膜辅助样品制备(FASP)和溶液内方案进行了比较评估。最后,将四种归一化方法(中位数、分位数、总肽量、TAMPOR)应用于先前发表的欧洲医学信息框架阿尔茨海默病多模态生物标志物发现(EMIF-AD MBD)数据集。

结果

与由单个脑脊液池的等分试样组成的TMT多重样本相比,由个体脑脊液样本组成的TMT多重样本中,测得的TMT报告离子比率与加标的标准肽量之间的相关性显著较低,这表明脑脊液样本组成的异质性会影响TMT定量。TMT报告离子归一化方法的比较表明,应用基于中位数和分位数的归一化可提高相关性。通过在MS³模式下采集数据,斜率得到改善,尽管代价是鉴定出的蛋白质数量减少了29%。脑脊液样本的FASP和溶液内样品制备在鉴定出的蛋白质方面有73%的重叠。最后,通过优化数据归一化,我们列出了在EMIF-AD队列中鉴定出的64个生物标志物候选物清单(临床AD与对照,p < 0.01)。

结论

我们评估了脑脊液中TMT蛋白质组学的几个分析方面。我们的研究结果提供了实用指南,以提高定量准确性,并有助于样品制备和分析方案的设计。从EMIF-AD队列中提取的AD生物标志物清单可为未来的生物标志物研究提供有价值的基础,并有助于阐明AD的致病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9107710/8793aecad228/12014_2022_9354_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验