Suppr超能文献

基于自适应修正协方差波束形成器和 EEG 信号对编码调制视觉诱发电位进行分类。

Classification of code-modulated visual evoked potentials using adaptive modified covariance beamformer and EEG signals.

机构信息

Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran.

Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106859. doi: 10.1016/j.cmpb.2022.106859. Epub 2022 May 7.

Abstract

OBJECTIVE

In general, brain computer interface (BCI) studies based on code-modulated Visual Evoked Potentials (c-VEP) use m-sequences to decode EEG responses to visual stimuli. BCI systems based on the c-VEP paradigm can simultaneously present a large number of commands, which results in a significantly high information transfer rate (ITR). Spatiotemporal beamforming (STB) is one of the commonly used approaches in c-VEP-based BCI systems.

APPROACH

In the current work, a novel STB-based technique is proposed to detect the gazed targets. The proposed method improves the performance of conventional STB-based techniques by providing a robust estimation of the covariance matrix in short stimulation times. Different user parameter-free methods, including the convex combination (CC), the general linear combination (GLC), and the modified versions of these techniques, are used to estimate a reliable and robust covariance matrix when a small number of repetitions are available.

MAIN RESULTS

The stimulus presentation rate of 120 Hz is used to assess the performance of the proposed structures. Our proposed methods improved the classification accuracy by an average of 20% compared to the conventional STB method at the shortest stimulation time. The proposed method achieves an average ITR of 157.07 bits/min by using only two repetitions of the m-sequences.

SIGNIFICANCE

The results show that our proposed methods perform significantly better than the conventional STB technique in all stimulation times.

摘要

目的

一般来说,基于码调制视觉诱发电位(c-VEP)的脑机接口(BCI)研究使用 m 序列来解码对视觉刺激的 EEG 响应。基于 c-VEP 范式的 BCI 系统可以同时呈现大量命令,从而导致信息传输率(ITR)显著提高。时空波束形成(STB)是基于 c-VEP 的 BCI 系统中常用的方法之一。

方法

在当前工作中,提出了一种基于新型 STB 的技术来检测注视目标。该方法通过在短刺激时间内提供协方差矩阵的稳健估计,提高了基于传统 STB 的技术的性能。在可用的重复次数较少的情况下,使用了不同的用户参数自由方法,包括凸组合(CC)、广义线性组合(GLC)以及这些技术的修改版本,以估计可靠和稳健的协方差矩阵。

主要结果

使用 120 Hz 的刺激呈现率来评估所提出结构的性能。与传统 STB 方法相比,我们提出的方法在最短的刺激时间内平均提高了 20%的分类精度。通过仅使用 m 序列的两个重复,我们提出的方法实现了平均 157.07 位/分钟的平均 ITR。

意义

结果表明,在所有刺激时间内,我们提出的方法都明显优于传统的 STB 技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验