Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China.
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
J Neural Eng. 2024 Apr 2;21(2). doi: 10.1088/1741-2552/ad3679.
Code-modulated visual evoked potential (c-VEP) based brain-computer interfaces (BCIs) exhibit high encoding efficiency. Nevertheless, the majority of c-VEP based BCIs necessitate an initial training or calibration session, particularly when the number of targets expands, which impedes the practicality. To address this predicament, this study introduces a calibration-free c-VEP based BCI employing narrow-band random sequences.For the encoding method, a series of random sequences were generated within a specific frequency band. The c-VEP signals were subsequently elicited through the application of on-type grid flashes that were modulated by these sequences. For the calibration-free decoding algorithm, filter-bank canonical correlation analysis (FBCCA) was utilized with the reference templates generated from the original sequences. Thirty-five subjects participated into an online BCI experiment. The performances of c-VEP based BCIs utilizing narrow-band random sequences with frequency bands of 15-25 Hz (NBRS-15) and 8-16 Hz (NBRS-8) were compared with that of a steady-state visual evoked potential (SSVEP) based BCI within a frequency range of 8-15.8 Hz.The offline analysis results demonstrated a substantial correlation between the c-VEPs and the original narrow-band random sequences. After parameter optimization, the calibration-free system employing the NBRS-15 frequency band achieved an average information transfer rate (ITR) of 78.56 ± 37.03 bits/min, which exhibited no significant difference compared to the performance of the SSVEP based system when utilizing FBCCA. The proposed system achieved an average ITR of 102.1 ± 57.59 bits/min in a simulation of a 1000-target BCI system.This study introduces a novel calibration-free c-VEP based BCI system employing narrow-band random sequences and shows great potential of the proposed system in achieving a large number of targets and high ITR.
基于调制码视觉诱发电位 (c-VEP) 的脑机接口 (BCI) 具有较高的编码效率。然而,大多数基于 c-VEP 的 BCI 需要进行初始训练或校准,尤其是在目标数量增加时,这限制了其实用性。为了解决这个问题,本研究提出了一种免校准的基于窄带随机序列的 c-VEP BCI。对于编码方法,在特定频段内生成一系列随机序列。然后通过调制这些序列的同类型栅格闪烁来诱发 c-VEP 信号。对于免校准的解码算法,使用了滤波器组典型相关分析 (FBCCA),并使用原始序列生成的参考模板。三十五名受试者参与了在线 BCI 实验。比较了 15-25 Hz (NBRS-15) 和 8-16 Hz (NBRS-8) 频段的基于窄带随机序列的 c-VEP BCI 与 8-15.8 Hz 频段的基于稳态视觉诱发电位 (SSVEP) 的 BCI 的性能。离线分析结果表明,c-VEP 与原始窄带随机序列之间存在很强的相关性。经过参数优化后,采用 NBRS-15 频段的免校准系统平均信息传输率 (ITR) 为 78.56±37.03 bits/min,与采用 FBCCA 的 SSVEP 系统的性能相比没有显著差异。在模拟 1000 个目标的 BCI 系统中,该系统的平均 ITR 为 102.1±57.59 bits/min。本研究提出了一种新的免校准基于窄带随机序列的 c-VEP BCI 系统,展示了该系统在实现大量目标和高 ITR 方面的巨大潜力。