Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
Sensors (Basel). 2024 May 30;24(11):3521. doi: 10.3390/s24113521.
In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.
近年来,基于视觉诱发电位(VEP)的脑机接口(BCI)的研究取得了相当大的进展。然而,检测由小视觉刺激引起的 VEP 仍然是一个巨大的挑战。为了解决这个挑战,本研究采用了一个带有 66 个电极的 256 电极高密度脑电图(EEG)帽,这些电极位于顶叶和枕叶。设计并实现了一个基于码调制 VEP(C-VEP)的在线 BCI 系统,该系统使用由时间移位二进制伪随机序列调制的三十个目标。采用任务判别成分分析(TDCA)算法进行特征提取和分类。离线和在线实验旨在评估 EEG 响应和分类性能,以比较四个不同刺激大小在 0.5°、1°、2°和 3°视角的结果。通过在线实验中优化每个受试者的数据长度,实现了 126.48±14.14、221.73±15.69、258.39±9.28 和 266.40±6.52 bits/min 的信息传输率(ITR),分别对应 0.5°、1°、2°和 3°。本研究还进一步比较了 256 电极脑电图帽的 66 电极布局、128 电极脑电图帽的 32 电极布局和 64 电极脑电图帽的 21 电极布局的 EEG 特征和分类性能,阐明了在使用小刺激时,提高电极密度对增强 C-VEP BCI 系统性能的至关重要性。