Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain; Department of Science, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002, Valencia, Spain.
Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain.
Genomics. 2022 Jul;114(4):110386. doi: 10.1016/j.ygeno.2022.110386. Epub 2022 May 13.
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
了解酵母的热适应机制对于开发更适应工业过程的菌株至关重要,从而提供更经济和可持续的产品。我们分析了三种酿酒酵母菌株(商业葡萄酒菌株 ADY5、实验室菌株 CEN.PK113-7D 和商业生物乙醇菌株 Ethanol Red)在厌氧恒化器条件下非最适温度下的转录组应答。三种菌株的转录组分析揭示了细胞机制和应答的巨大复杂性。总体而言,与热条件相比,冷对三种菌株的转录应答更强,无论分析的菌株如何,下调基因的数量都高于上调基因的数量。在亚最佳和最佳温度下的转录组比较表明,存在共同的上调或下调基因,但也存在共同的上调或下调基因在三种研究菌株中。更具体地说,我们在三种菌株中鉴定并验证了三个在亚最佳温度下上调的基因 OPI3、EFM6 和 YOL014W。最后,将转录组数据与同一菌株的先前蛋白质组学研究进行比较,揭示了基因活性和蛋白质丰度之间的良好相关性,主要是在低温下。我们的工作提供了一个全面的了解,涉及转录组和蛋白质组的温度适应的具体机制,这可以在理解和提高酵母耐热性方面迈出一步。