Suppr超能文献

HearCough:在边缘计算可听设备上实现连续咳嗽事件检测。

HearCough: Enabling continuous cough event detection on edge computing hearables.

机构信息

Key Laboratory of Pervasive Computing, Ministry of Education, Department of Computer Science and Technology, Tsinghua University, Beijing, China.

Key Laboratory of Pervasive Computing, Ministry of Education, Department of Computer Science and Technology, Tsinghua University, Beijing, China.

出版信息

Methods. 2022 Sep;205:53-62. doi: 10.1016/j.ymeth.2022.05.002. Epub 2022 May 13.

Abstract

Cough event detection is the foundation of any measurement associated with cough, one of the primary symptoms of pulmonary illnesses. This paper proposes HearCough, which enables continuous cough event detection on edge computing hearables, by leveraging always-on active noise cancellation (ANC) microphones in commodity hearables. Specifically, we proposed a lightweight end-to-end neural network model - Tiny-COUNET and its transfer learning based traning method. When evaluated on our acted cough event dataset, Tiny-COUNET achieved equivalent detection performance but required significantly less computational resources and storage space than cutting-edge cough event detection methods. Then we implemented HearCough by quantifying and deploying the pre-trained Tiny-COUNET to a popular micro-controller in consumer hearables. Lastly, we evaluated that HearCough is effective and reliable for continuous cough event detection through a field study with 8 patients. HearCough achieved 2 Hz cough event detection with an accuracy of 90.0% and an F1-score of 89.5% by consuming an additional 5.2 mW power. We envision HearCough as a low-cost add-on for future hearables to enable continuous cough detection and pulmonary health monitoring.

摘要

咳嗽事件检测是与咳嗽相关的任何测量的基础,咳嗽是肺部疾病的主要症状之一。本文提出了 HearCough,它利用商品耳塞式耳机中的始终开启的主动降噪(ANC)麦克风,实现了边缘计算耳塞式耳机上的连续咳嗽事件检测。具体来说,我们提出了一种轻量级的端到端神经网络模型——Tiny-COUNET 及其基于迁移学习的训练方法。在我们的模拟咳嗽事件数据集上进行评估时,Tiny-COUNET 实现了相当的检测性能,但所需的计算资源和存储空间明显少于最先进的咳嗽事件检测方法。然后,我们通过量化并将经过预训练的 Tiny-COUNET 部署到消费者耳塞式耳机中的流行微控制器,实现了 HearCough。最后,我们通过对 8 名患者的现场研究评估了 HearCough 对连续咳嗽事件检测的有效性和可靠性。HearCough 通过消耗额外的 5.2mW 功率,以 90.0%的准确率和 89.5%的 F1 分数实现了 2Hz 的咳嗽事件检测。我们设想 HearCough 可以作为未来耳塞式耳机的低成本附加组件,以实现连续咳嗽检测和肺部健康监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验