Suppr超能文献

高效的 k-NN 实现用于智能手机中实时咳嗽事件检测。

Efficient k-NN Implementation for Real-Time Detection of Cough Events in Smartphones.

出版信息

IEEE J Biomed Health Inform. 2018 Sep;22(5):1662-1671. doi: 10.1109/JBHI.2017.2768162. Epub 2017 Nov 2.

Abstract

The potential  of telemedicine in respiratory health care has not been completely unveiled in part due to the inexistence of reliable objective measurements of symptoms such as cough. Currently available cough detectors are uncomfortable and expensive at a time when generic smartphones can perform this task. However, two major challenges preclude smartphone-based cough detectors from effective deployment namely, the need to deal with noisy environments and computational cost. This paper focuses on the latter, since complex machine learning algorithms are too slow for real-time use and kill the battery in a few hours unless specific actions are taken. In this paper, we present a robust and efficient implementation of a smartphone-based cough detector. The audio signal acquired from the device's microphone is processed by computing local Hu moments as a robust feature set in the presence of background noise. We previously demonstrated that pairing Hu moments and a standard k-NN classifier achieved accurate cough detection at the expense of computation time. To speed-up k-NN search, many tree structures have been proposed. Our cough detector uses an improved vantage point (vp)-tree with optimized construction methods and a distance function that results in faster searches. We achieve 18× speed-up over classic vp-trees, and 560× over standard implementations of k-NN in state-of-the-art machine learning libraries, with classification accuracies over 93%, enabling real-time performance on low-end smartphones.

摘要

远程医疗在呼吸健康护理中的潜力尚未完全显现,部分原因是缺乏可靠的症状(如咳嗽)客观测量方法。目前可用的咳嗽探测器在舒适性和价格方面存在问题,而普通智能手机就可以完成这项任务。然而,有两个主要挑战阻止了基于智能手机的咳嗽探测器的有效部署,即需要处理嘈杂的环境和计算成本。本文主要关注后者,因为复杂的机器学习算法对于实时使用来说太慢,而且除非采取特定措施,否则几个小时内就会耗尽电池。在本文中,我们提出了一种基于智能手机的咳嗽探测器的稳健高效的实现方法。设备麦克风采集的音频信号通过计算局部 Hu 矩作为稳健的特征集进行处理,从而在存在背景噪声的情况下进行处理。我们之前已经证明,Hu 矩和标准 k-NN 分类器的组合可以实现准确的咳嗽检测,但代价是计算时间。为了加快 k-NN 搜索,已经提出了许多树结构。我们的咳嗽探测器使用改进的视点(vp)-树,其具有优化的构建方法和距离函数,从而实现更快的搜索。与经典 vp 树相比,我们实现了 18 倍的加速,与最先进的机器学习库中 k-NN 的标准实现相比,实现了 560 倍的加速,分类准确率超过 93%,从而可以在低端智能手机上实现实时性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验