Caretta Lucas, Rosenberg Ethan, Büttner Felix, Fakhrul Takian, Gargiani Pierluigi, Valvidares Manuel, Chen Zhen, Reddy Pooja, Muller David A, Ross Caroline A, Beach Geoffrey S D
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
ALBA Synchrotron Light Source, E-08290, Barcelona, Spain.
Nat Commun. 2020 Feb 27;11(1):1090. doi: 10.1038/s41467-020-14924-7.
The Dzyaloshinskii-Moriya interaction (DMI) is responsible for exotic chiral and topological magnetic states such as spin spirals and skyrmions. DMI manifests at metallic ferromagnet/heavy-metal interfaces, owing to inversion symmetry breaking and spin-orbit coupling by a heavy metal such as Pt. Moreover, in centrosymmetric magnetic oxides interfaced by Pt, DMI-driven topological spin textures and fast current-driven dynamics have been reported, though the origin of this DMI is unclear. While in metallic systems, spin-orbit coupling arises from a proximate heavy metal, we show that in perpendicularly-magnetized iron garnets, rare-earth orbital magnetism gives rise to an intrinsic spin-orbit coupling generating interfacial DMI at mirror symmetry-breaking interfaces. We show that rare-earth ion substitution and strain engineering can significantly alter the DMI. These results provide critical insights into the origins of chiral magnetism in low-damping magnetic oxides and identify paths toward engineering chiral and topological states in centrosymmetric oxides through rare-earth ion substitution.
Dzyaloshinskii-Moriya相互作用(DMI)导致了诸如自旋螺旋和斯格明子等奇特的手性和拓扑磁态。DMI出现在金属铁磁体/重金属界面处,这是由于重金属(如Pt)破坏了反演对称性并产生了自旋轨道耦合。此外,在由Pt界面的中心对称磁性氧化物中,尽管这种DMI的起源尚不清楚,但已经报道了DMI驱动的拓扑自旋纹理和快速电流驱动的动力学。在金属系统中,自旋轨道耦合源于邻近的重金属,而我们表明,在垂直磁化的铁石榴石中,稀土轨道磁性会产生本征自旋轨道耦合,在镜面对称性破缺的界面处产生界面DMI。我们表明,稀土离子取代和应变工程可以显著改变DMI。这些结果为低阻尼磁性氧化物中手性磁性的起源提供了关键见解,并确定了通过稀土离子取代在中心对称氧化物中设计手性和拓扑态的途径。