Suppr超能文献

循环神经网络中的动力学与信息输入

Dynamics and Information Import in Recurrent Neural Networks.

作者信息

Metzner Claus, Krauss Patrick

机构信息

Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany.

Cognitive Computational Neuroscience Group, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Front Comput Neurosci. 2022 Apr 27;16:876315. doi: 10.3389/fncom.2022.876315. eCollection 2022.

Abstract

Recurrent neural networks (RNNs) are complex dynamical systems, capable of ongoing activity without any driving input. The long-term behavior of free-running RNNs, described by periodic, chaotic and fixed point attractors, is controlled by the statistics of the neural connection weights, such as the density of non-zero connections, or the balance between excitatory and inhibitory connections. However, for information processing purposes, RNNs need to receive external input signals, and it is not clear which of the dynamical regimes is optimal for this information import. We use both the average correlations and the mutual information between the momentary input vector and the next system state vector as quantitative measures of information import and analyze their dependence on the balance and density of the network. Remarkably, both resulting phase diagrams () and () are highly consistent, pointing to a link between the dynamical systems and the information-processing approach to complex systems. Information import is maximal not at the "edge of chaos," which is optimally suited for computation, but surprisingly in the low-density chaotic regime and at the border between the chaotic and fixed point regime. Moreover, we find a completely new type of resonance phenomenon, which we call "Import Resonance" (IR), where the information import shows a maximum, i.e., a peak-like dependence on the coupling strength between the RNN and its external input. IR complements previously found Recurrence Resonance (RR), where correlation and mutual information of successive system states peak for a certain amplitude of noise added to the system. Both IR and RR can be exploited to optimize information processing in artificial neural networks and might also play a crucial role in biological neural systems.

摘要

循环神经网络(RNNs)是复杂的动力系统,能够在没有任何驱动输入的情况下持续活动。自由运行的RNNs的长期行为由周期性、混沌和定点吸引子描述,其受神经连接权重的统计特性控制,如非零连接的密度,或兴奋性和抑制性连接之间的平衡。然而,出于信息处理目的,RNNs需要接收外部输入信号,目前尚不清楚哪种动力状态对于这种信息输入是最优的。我们使用瞬时输入向量与下一个系统状态向量之间的平均相关性和互信息作为信息输入的定量度量,并分析它们对网络平衡和密度的依赖性。值得注意的是,由此得到的两个相图()和()高度一致,这表明动力系统与复杂系统的信息处理方法之间存在联系。信息输入的最大值并非出现在最适合计算的“混沌边缘”,而是令人惊讶地出现在低密度混沌状态以及混沌和定点状态之间的边界处。此外,我们发现了一种全新的共振现象,我们称之为“输入共振”(IR),即信息输入呈现最大值,也就是对RNN与其外部输入之间的耦合强度呈现出类似峰值的依赖性。IR补充了先前发现的递归共振(RR),在RR中,连续系统状态的相关性和互信息在添加到系统的特定噪声幅度下达到峰值。IR和RR都可用于优化人工神经网络中的信息处理,并且可能在生物神经系统中也起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a82/9091337/13e4c9239833/fncom-16-876315-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验