Quaranta Vito, Linkous Amanda
Department of Biochemistry, Vanderbilt University, Nashville, TN, United States.
Front Oncol. 2022 Apr 28;12:881989. doi: 10.3389/fonc.2022.881989. eCollection 2022.
Small Cell Lung Cancer (SCLC) is a highly aggressive, neuroendocrine tumor. Traditional reductionist approaches have proven ineffective to ameliorate the uniformly dismal outcomes for SCLC - survival at 5 years remains less than 5%. A major obstacle to improving treatment is that SCLC tumor cells disseminate early, with a strong propensity for metastasizing to the brain. Accumulating evidence indicates that, contrary to previous textbook knowledge, virtually every SCLC tumor is comprised of multiple subtypes. Important questions persist regarding the role that this intra-tumor subtype heterogeneity may play in supporting the invasive properties of SCLC. A recurrent hypothesis in the field is that subtype interactions and/or transition dynamics are major determinants of SCLC metastatic seeding and progression. Here, we review the advantages of cerebral organoids as an experimentally accessible platform for SCLC brain metastasis, amenable to genetic manipulations, drug perturbations, and assessment of subtype interactions when coupled, e.g., to temporal longitudinal monitoring by high-content imaging or high-throughput omics data generation. We then consider systems approaches that can produce mathematical and computational models useful to generalize lessons learned from organoid cultures, and integrate them with observations. In summary, systems approaches combined with SCLC cultures in brain organoids may effectively capture both tumor-tumor and host-tumor interactions that underlie general principles of brain metastasis.
小细胞肺癌(SCLC)是一种侵袭性很强的神经内分泌肿瘤。传统的还原论方法已被证明无法改善SCLC普遍不佳的治疗结果——5年生存率仍低于5%。改善治疗的一个主要障碍是SCLC肿瘤细胞早期就会扩散,极易转移至脑部。越来越多的证据表明,与之前教科书知识相反,几乎每例SCLC肿瘤都由多种亚型组成。关于肿瘤内亚型异质性在支持SCLC侵袭特性中可能发挥的作用,仍存在重要问题。该领域一个反复出现的假设是,亚型相互作用和/或转变动态是SCLC转移播种和进展的主要决定因素。在此,我们综述了脑类器官作为SCLC脑转移实验可及平台的优势,当与例如通过高内涵成像进行的时间纵向监测或高通量组学数据生成相结合时,脑类器官适合进行基因操作、药物扰动以及亚型相互作用评估。然后,我们考虑能够产生数学和计算模型的系统方法,这些模型有助于概括从类器官培养中学到的经验教训,并将其与观察结果相结合。总之,系统方法与脑类器官中的SCLC培养相结合,可能有效地捕捉到构成脑转移一般原则基础的肿瘤-肿瘤和宿主-肿瘤相互作用。