文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多序列磁共振成像的多区域放射组学分析可术前预测肝细胞癌微血管侵犯

Multi-Region Radiomic Analysis Based on Multi-Sequence MRI Can Preoperatively Predict Microvascular Invasion in Hepatocellular Carcinoma.

作者信息

Gao Lanmei, Xiong Meilian, Chen Xiaojie, Han Zewen, Yan Chuan, Ye Rongping, Zhou Lili, Li Yueming

机构信息

Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.

The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, China.

出版信息

Front Oncol. 2022 Apr 27;12:818681. doi: 10.3389/fonc.2022.818681. eCollection 2022.


DOI:10.3389/fonc.2022.818681
PMID:35574328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9094629/
Abstract

OBJECTIVES: Microvascular invasion (MVI) affects the postoperative prognosis in hepatocellular carcinoma (HCC) patients; however, there remains a lack of reliable and effective tools for preoperative prediction of MVI. Radiomics has shown great potential in providing valuable information for tumor pathophysiology. We constructed and validated radiomics models with and without clinico-radiological factors to predict MVI. METHODS: One hundred and fifteen patients with pathologically confirmed HCC (training set: n = 80; validation set: n = 35) who underwent preoperative MRI were retrospectively recruited. Radiomics models based on multi-sequence MRI across various regions (including intratumoral and/or peritumoral areas) were built using four classification algorithms. A clinico-radiological model was constructed individually and combined with a radiomics model to generate a fusion model by multivariable logistic regression. RESULTS: Among the radiomics models, the model based on T2WI and arterial phase (T2WI-AP model) in the volume of the liver-HCC interface (VOI) exhibited the best predictive power, with AUCs of 0.866 in the training group and 0.855 in the validation group. The clinico-radiological model exhibited good efficacy (AUC: 0.819 and 0.717, respectively). The fusion model showed excellent predictive ability (AUC: 0.915 and 0.868, respectively), outperforming both the clinico-radiological and the T2WI-AP models in the training and validation sets. CONCLUSION: The fusion model of multi-region radiomics achieves an enhanced prediction of the individualized risk estimation of MVI in HCC patients. This may be a beneficial tool for clinicians to improve decision-making in personalized medicine.

摘要

目的:微血管侵犯(MVI)影响肝细胞癌(HCC)患者的术后预后;然而,术前预测MVI仍缺乏可靠有效的工具。放射组学在为肿瘤病理生理学提供有价值信息方面显示出巨大潜力。我们构建并验证了包含和不包含临床放射学因素的放射组学模型来预测MVI。 方法:回顾性纳入115例术前接受MRI检查且病理确诊为HCC的患者(训练集:n = 80;验证集:n = 35)。使用四种分类算法构建基于不同区域(包括瘤内和/或瘤周区域)多序列MRI的放射组学模型。单独构建临床放射学模型,并通过多变量逻辑回归将其与放射组学模型相结合以生成融合模型。 结果:在放射组学模型中,基于肝-HCC界面(VOI)体积的T2WI和动脉期的模型(T2WI-AP模型)表现出最佳预测能力,训练组和验证组的AUC分别为0.866和0.855。临床放射学模型显示出良好的效能(AUC分别为0.819和0.717)。融合模型显示出优异的预测能力(AUC分别为0.915和0.868),在训练集和验证集中均优于临床放射学模型和T2WI-AP模型。 结论:多区域放射组学的融合模型实现了对HCC患者MVI个体化风险估计的增强预测。这可能是临床医生改善个性化医疗决策的有益工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/2119fd1d79f0/fonc-12-818681-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/27c94cc53d38/fonc-12-818681-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/f0b3d7ced30f/fonc-12-818681-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/34e15e085fa4/fonc-12-818681-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/d7ed2d3521c7/fonc-12-818681-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/2119fd1d79f0/fonc-12-818681-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/27c94cc53d38/fonc-12-818681-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/f0b3d7ced30f/fonc-12-818681-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/34e15e085fa4/fonc-12-818681-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/d7ed2d3521c7/fonc-12-818681-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/9094629/2119fd1d79f0/fonc-12-818681-g005.jpg

相似文献

[1]
Multi-Region Radiomic Analysis Based on Multi-Sequence MRI Can Preoperatively Predict Microvascular Invasion in Hepatocellular Carcinoma.

Front Oncol. 2022-4-27

[2]
Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma.

World J Gastroenterol. 2022-8-21

[3]
Radiomic Features of Multi-ROI and Multi-Phase MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma.

Front Oncol. 2021-10-7

[4]
Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm.

Eur Radiol. 2021-7

[5]
A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma.

Quant Imaging Med Surg. 2019-9

[6]
Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT.

Eur Radiol. 2019-2-15

[7]
Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-8-28

[8]
Development of a magnetic resonance imaging-derived radiomics model to predict microvascular invasion in patients with hepatocellular carcinoma.

Quant Imaging Med Surg. 2023-6-1

[9]
A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

Liver Cancer. 2019-10

[10]
A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI.

Eur Radiol. 2020-1-30

引用本文的文献

[1]
Biparametric magnetic resonance imaging-based radiomic and deep learning models for predicting Ki-67 risk stratification in hepatocellular carcinoma.

World J Hepatol. 2025-8-27

[2]
Can Peritumoral Radiomics Based on MRI Predict the Microvascular Invasion Status of Combined Hepatocellular Carcinoma and Cholangiocarcinoma Before Surgery?

J Hepatocell Carcinoma. 2025-7-16

[3]
Radiomics/Radiogenomics in hepatocellular carcinoma: Applications and challenges in interventional management.

ILIVER. 2022-8-1

[4]
Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC Med Imaging. 2025-3-31

[5]
Improving differentiation of hemorrhagic brain metastases from non-neoplastic hematomas using radiomics and clinical feature fusion.

Neuroradiology. 2025-3-25

[6]
Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study.

Transl Oncol. 2025-2

[7]
Advancing Hepatocellular Carcinoma Management Through Peritumoral Radiomics: Enhancing Diagnosis, Treatment, and Prognosis.

J Hepatocell Carcinoma. 2024-11-4

[8]
Prediction of microvascular invasion in hepatocellular carcinoma patients with MRI radiomics based on susceptibility weighted imaging and T2-weighted imaging.

Radiol Med. 2024-8

[9]
Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma.

Insights Imaging. 2024-3-27

[10]
Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma.

Abdom Radiol (NY). 2024-6

本文引用的文献

[1]
A Radiomics Nomogram for Preoperative Prediction of Early Recurrence of Small Hepatocellular Carcinoma After Surgical Resection or Radiofrequency Ablation.

Front Oncol. 2021-4-29

[2]
Prediction of Microvascular Invasion in Hepatocellular Carcinoma With a Multi-Disciplinary Team-Like Radiomics Fusion Model on Dynamic Contrast-Enhanced Computed Tomography.

Front Oncol. 2021-3-16

[3]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[4]
Hepatocellular carcinoma.

Nat Rev Dis Primers. 2021-1-21

[5]
Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm.

Eur Radiol. 2021-7

[6]
The Biological Meaning of Radiomic Features.

Radiology. 2021-3

[7]
CT Image-Based Texture Analysis to Predict Microvascular Invasion in Primary Hepatocellular Carcinoma.

J Digit Imaging. 2020-12

[8]
Texture Analysis of Three-Dimensional MRI Images May Differentiate Borderline and Malignant Epithelial Ovarian Tumors.

Korean J Radiol. 2021-1

[9]
MR imaging of thymomas: a combined radiomics nomogram to predict histologic subtypes.

Eur Radiol. 2021-1

[10]
Texture analysis on preoperative contrast-enhanced magnetic resonance imaging identifies microvascular invasion in hepatocellular carcinoma.

HPB (Oxford). 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索