文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于双区域CT的放射组学特征可预测肝细胞癌中脂肪酸结合蛋白4的表达水平及预后。

Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma.

作者信息

Wen Jingyu, Wang Xi, Xia Mingge, Wei Bowen, Yang Hongji, Hou Yifu

机构信息

Department of Medical Insurance, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Abdom Radiol (NY). 2024 Jun;49(6):1905-1917. doi: 10.1007/s00261-023-04177-5. Epub 2024 Mar 7.


DOI:10.1007/s00261-023-04177-5
PMID:38453791
Abstract

RATIONALE AND OBJECTIVES: To evaluate the predictive value of tumor and peritumor radiomics in the fatty acid binding protein 4 (FABP4) expression levels and overall survival in patients with hepatocellular carcinoma. MATERIALS AND METHODS: The genomic data of HCC patients were obtained from The Cancer Genome Atlas. The Dual-area CT images of corresponding patients were downloaded from The Cancer Imaging Archive, for radiomics feature extraction, model construction and prognosis analysis. Simultaneously, using patients from Sichuan Provincial People's Hospital, the prognostic value of the radiomics model in HCC patients was validated. RESULTS: In the TCIA database, the area under the curve (AUC) values of the volumes of interest (VOI) model in the training set and internal validation set were 0.812 and 0.754, respectively, and the AUC value of VOI in the training set and internal validation set were 0.866 and 0.779, respectively. In the VOI and the VOI model of the independent cohort, there were significant differences in OS between the high and low rad-score groups (P = 0.009, P = 0.021, respectively). Significant positive correlations can be observed between FABP4 expression and correlations with rad-score of VOI model (r = 0.691) and VOI model (r = 0.732) in the independent cohort. CONCLUSION: Radiomics models of tumor and peritumor Dual-area CT images could predict stably the expression levels of FABP4 and may be helping in personalized treatment strategies.

摘要

原理与目的:评估肿瘤及瘤周放射组学在肝细胞癌患者脂肪酸结合蛋白4(FABP4)表达水平及总生存中的预测价值。 材料与方法:肝细胞癌患者的基因组数据来自癌症基因组图谱。从癌症影像存档库下载相应患者的双区域CT图像,用于放射组学特征提取、模型构建及预后分析。同时,使用四川省人民医院的患者对放射组学模型在肝细胞癌患者中的预后价值进行验证。 结果:在TCIA数据库中,训练集和内部验证集中感兴趣体积(VOI)模型的曲线下面积(AUC)值分别为0.812和0.754,训练集和内部验证集中VOI的AUC值分别为0.866和0.779。在独立队列的VOI和VOI模型中,高、低放射评分组之间的总生存期存在显著差异(分别为P = 0.009,P = 0.021)。在独立队列中,可观察到FABP4表达与VOI模型(r = 0.691)和VOI模型(r = 0.732)的放射评分之间存在显著正相关。 结论:肿瘤及瘤周双区域CT图像的放射组学模型能够稳定预测FABP4的表达水平,可能有助于制定个性化治疗策略。

相似文献

[1]
Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma.

Abdom Radiol (NY). 2024-6

[2]
Predicting treatment response and prognosis of immune checkpoint inhibitors-based combination therapy in advanced hepatocellular carcinoma using a longitudinal CT-based radiomics model: a multicenter study.

BMC Cancer. 2025-4-3

[3]
Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma.

Abdom Radiol (NY). 2020-1

[4]
A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver.

Cancer Imaging. 2020-2-24

[5]
A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy.

Cancer Imaging. 2020-11-16

[6]
Added value of CE-CT radiomics to predict high Ki-67 expression in hepatocellular carcinoma.

BMC Med Imaging. 2023-9-22

[7]
Deep learning-based CT radiomics predicts prognosis of unresectable hepatocellular carcinoma treated with TACE-HAIC combined with PD-1 inhibitors and tyrosine kinase inhibitors.

BMC Gastroenterol. 2025-1-21

[8]
Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-8-28

[9]
Predicting Microvascular Invasion in Hepatocellular Carcinoma Using CT-based Radiomics Model.

Radiology. 2023-5

[10]
Computed tomography-based radiomics to predict early recurrence of hepatocellular carcinoma post-hepatectomy in patients background on cirrhosis.

World J Gastroenterol. 2024-4-21

引用本文的文献

[1]
Advancing Hepatocellular Carcinoma Management Through Peritumoral Radiomics: Enhancing Diagnosis, Treatment, and Prognosis.

J Hepatocell Carcinoma. 2024-11-4

本文引用的文献

[1]
Radiomic model to predict the expression of PD-1 and overall survival of patients with ovarian cancer.

Int Immunopharmacol. 2022-12

[2]
Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer.

Eur Radiol. 2023-2

[3]
Tumor and peritumor radiomics analysis based on contrast-enhanced CT for predicting early and late recurrence of hepatocellular carcinoma after liver resection.

BMC Cancer. 2022-6-17

[4]
Multi-Region Radiomic Analysis Based on Multi-Sequence MRI Can Preoperatively Predict Microvascular Invasion in Hepatocellular Carcinoma.

Front Oncol. 2022-4-27

[5]
Preoperative Prediction of Microvascular Invasion Risk Grades in Hepatocellular Carcinoma Based on Tumor and Peritumor Dual-Region Radiomics Signatures.

Front Oncol. 2022-3-22

[6]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[7]
Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma.

Eur J Surg Oncol. 2022-5

[8]
CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas.

EBioMedicine. 2021-6

[9]
FABP4: A New Player in Obesity-Associated Breast Cancer.

Trends Mol Med. 2020-5

[10]
Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study.

Radiology. 2020-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索