Suppr超能文献

对来自英国的推特上关于新冠疫情的个人报告进行的时间顺序和地理分析。

A chronological and geographical analysis of personal reports of COVID-19 on Twitter from the UK.

作者信息

Golder Su, Klein Ari Z, Magge Arjun, O'Connor Karen, Cai Haitao, Weissenbacher Davy, Gonzalez-Hernandez Graciela

机构信息

Department of Health Sciences, University of York, York, UK.

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Digit Health. 2022 May 5;8:20552076221097508. doi: 10.1177/20552076221097508. eCollection 2022 Jan-Dec.

Abstract

OBJECTIVE

Given the uncertainty about the trends and extent of the rapidly evolving COVID-19 outbreak, and the lack of extensive testing in the United Kingdom, our understanding of COVID-19 transmission is limited. We proposed to use Twitter to identify personal reports of COVID-19 to assess whether this data can help inform as a source of data to help us understand and model the transmission and trajectory of COVID-19.

METHODS

We used natural language processing and machine learning framework. We collected tweets (excluding retweets) from the Twitter Streaming API that indicate that the user or a member of the user's household had been exposed to COVID-19. The tweets were required to be geo-tagged or have profile location metadata in the UK.

RESULTS

We identified a high level of agreement between personal reports from Twitter and lab-confirmed cases by geographical region in the UK. Temporal analysis indicated that personal reports from Twitter appear up to 2 weeks before UK government lab-confirmed cases are recorded.

CONCLUSIONS

Analysis of tweets may indicate trends in COVID-19 in the UK and provide signals of geographical locations where resources may need to be targeted or where regional policies may need to be put in place to further limit the spread of COVID-19. It may also help inform policy makers of the restrictions in lockdown that are most effective or ineffective.

摘要

目的

鉴于快速演变的新冠疫情的趋势和范围存在不确定性,且英国缺乏广泛的检测,我们对新冠病毒传播的了解有限。我们提议利用推特来识别新冠病毒的个人报告,以评估这些数据是否有助于作为一种数据来源,帮助我们了解和模拟新冠病毒的传播及发展轨迹。

方法

我们使用了自然语言处理和机器学习框架。我们从推特流式应用程序编程接口收集推文(不包括转发),这些推文表明用户或其家庭成员接触过新冠病毒。这些推文需要带有地理位置标签或在英国有个人资料位置元数据。

结果

我们发现推特上的个人报告与英国按地理区域划分的实验室确诊病例之间高度一致。时间分析表明,推特上的个人报告比英国政府实验室确诊病例记录早出现长达两周。

结论

对推文的分析可能表明英国新冠疫情的趋势,并提供可能需要针对性投入资源或可能需要制定区域政策以进一步限制新冠病毒传播的地理位置信号。它还可能有助于告知政策制定者哪些封锁限制措施最有效或最无效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82c9/9096830/e8d0724c03bb/10.1177_20552076221097508-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验