School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Lancet Public Health. 2021 Jan;6(1):e21-e29. doi: 10.1016/S2468-2667(20)30269-3. Epub 2020 Dec 3.
As many countries seek to slow the spread of COVID-19 without reimposing national restrictions, it has become important to track the disease at a local level to identify areas in need of targeted intervention.
In this prospective, observational study, we did modelling using longitudinal, self-reported data from users of the COVID Symptom Study app in England between March 24, and Sept 29, 2020. Beginning on April 28, in England, the Department of Health and Social Care allocated RT-PCR tests for COVID-19 to app users who logged themselves as healthy at least once in 9 days and then reported any symptom. We calculated incidence of COVID-19 using the invited swab (RT-PCR) tests reported in the app, and we estimated prevalence using a symptom-based method (using logistic regression) and a method based on both symptoms and swab test results. We used incidence rates to estimate the effective reproduction number, R(t), modelling the system as a Poisson process and using Markov Chain Monte-Carlo. We used three datasets to validate our models: the Office for National Statistics (ONS) Community Infection Survey, the Real-time Assessment of Community Transmission (REACT-1) study, and UK Government testing data. We used geographically granular estimates to highlight regions with rapidly increasing case numbers, or hotspots.
From March 24 to Sept 29, 2020, a total of 2 873 726 users living in England signed up to use the app, of whom 2 842 732 (98·9%) provided valid age information and daily assessments. These users provided a total of 120 192 306 daily reports of their symptoms, and recorded the results of 169 682 invited swab tests. On a national level, our estimates of incidence and prevalence showed a similar sensitivity to changes to those reported in the ONS and REACT-1 studies. On Sept 28, 2020, we estimated an incidence of 15 841 (95% CI 14 023-17 885) daily cases, a prevalence of 0·53% (0·45-0·60), and R(t) of 1·17 (1·15-1·19) in England. On a geographically granular level, on Sept 28, 2020, we detected 15 (75%) of the 20 regions with highest incidence according to government test data.
Our method could help to detect rapid case increases in regions where government testing provision is lower. Self-reported data from mobile applications can provide an agile resource to inform policy makers during a quickly moving pandemic, serving as a complementary resource to more traditional instruments for disease surveillance.
Zoe Global, UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Alzheimer's Society, Chronic Disease Research Foundation.
许多国家试图在不重新实施国家限制的情况下减缓 COVID-19 的传播,因此有必要在地方层面上跟踪疾病,以确定需要针对性干预的地区。
在这项前瞻性观察研究中,我们对 2020 年 3 月 24 日至 9 月 29 日期间在英格兰使用 COVID 症状研究应用程序的用户的纵向、自我报告数据进行建模。从 4 月 28 日开始,在英格兰,卫生和社会保障部向至少在 9 天内自我报告健康状况且随后报告任何症状的应用程序用户分配 COVID-19 的 RT-PCR 检测。我们使用应用程序中报告的邀请拭子(RT-PCR)检测来计算 COVID-19 的发病率,并使用基于症状的方法(使用逻辑回归)和基于症状和拭子检测结果的方法来估计患病率。我们使用发病率来估计有效繁殖数 R(t),通过泊松过程建模系统,并使用马尔可夫链蒙特卡罗方法。我们使用了三个数据集来验证我们的模型:国家统计局(ONS)社区感染调查、实时社区传播评估(REACT-1)研究和英国政府检测数据。我们使用地理上细粒度的估计值来突出显示病例数量迅速增加或热点地区。
从 2020 年 3 月 24 日至 9 月 29 日,共有 2873726 名居住在英格兰的用户注册使用该应用程序,其中 2842732 名(98.9%)提供了有效的年龄信息和每日评估。这些用户总共提供了 120192306 次症状每日报告,并记录了 169682 次受邀拭子检测的结果。在全国范围内,我们对发病率和患病率的估计与 ONS 和 REACT-1 研究报告的变化具有相似的敏感性。在 2020 年 9 月 28 日,我们估计英格兰的每日病例数为 15841 例(95%CI 14023-17885),患病率为 0.53%(0.45-0.60),R(t)为 1.17(1.15-1.19)。在地理上细粒度的层面上,在 2020 年 9 月 28 日,我们根据政府检测数据检测到了 15 个(75%)发病率最高的 20 个地区。
我们的方法可以帮助检测到政府检测提供较低地区的病例快速增加。来自移动应用程序的自我报告数据可以为政策制定者在快速发展的大流行期间提供一个灵活的资源,作为疾病监测更传统工具的补充资源。
Zoe Global、英国卫生和社会保障部、惠康信托基金、英国工程和物理科学研究理事会、英国国家健康研究所、英国医学研究理事会和英国心脏基金会、阿尔茨海默病协会、慢性疾病研究基金会。