Suppr超能文献

InterPepScore:一种深度学习评分方法,可改进 FlexPepDock 精修协议。

InterPepScore: a deep learning score for improving the FlexPepDock refinement protocol.

机构信息

Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.

出版信息

Bioinformatics. 2022 Jun 13;38(12):3209-3215. doi: 10.1093/bioinformatics/btac325.

Abstract

MOTIVATION

Interactions between peptide fragments and protein receptors are vital to cell function yet difficult to experimentally determine in structural details of. As such, many computational methods have been developed to aid in peptide-protein docking or structure prediction. One such method is Rosetta FlexPepDock which consistently refines coarse peptide-protein models into sub-Ångström precision using Monte-Carlo simulations and statistical potentials. Deep learning has recently seen increased use in protein structure prediction, with graph neural networks used for protein model quality assessment.

RESULTS

Here, we introduce a graph neural network, InterPepScore, as an additional scoring term to complement and improve the Rosetta FlexPepDock refinement protocol. InterPepScore is trained on simulation trajectories from FlexPepDock refinement starting from thousands of peptide-protein complexes generated by a wide variety of docking schemes. The addition of InterPepScore into the refinement protocol consistently improves the quality of models created, and on an independent benchmark on 109 peptide-protein complexes its inclusion results in an increase in the number of complexes for which the top-scoring model had a DockQ-score of 0.49 (Medium quality) or better from 14.8% to 26.1%.

AVAILABILITY AND IMPLEMENTATION

InterPepScore is available online at http://wallnerlab.org/InterPepScore.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

肽段与蛋白受体之间的相互作用对细胞功能至关重要,但难以在结构细节上进行实验确定。因此,已经开发了许多计算方法来辅助肽-蛋白对接或结构预测。其中一种方法是 Rosetta FlexPepDock,它使用蒙特卡罗模拟和统计势能一致地将粗肽-蛋白模型细化到亚埃精度。深度学习最近在蛋白质结构预测中得到了越来越多的应用,图神经网络用于蛋白质模型质量评估。

结果

在这里,我们引入了一个图神经网络 InterPepScore,作为一个额外的评分项来补充和改进 Rosetta FlexPepDock 细化协议。InterPepScore 是在 FlexPepDock 细化的模拟轨迹上进行训练的,这些轨迹是由各种对接方案生成的数千个肽-蛋白复合物生成的。将 InterPepScore 添加到细化协议中,始终可以提高所创建模型的质量,并且在一个包含 109 个肽-蛋白复合物的独立基准测试中,其包含可以将 DockQ 得分为 0.49(中等质量)或更好的复合物数量从 14.8%增加到 26.1%。

可用性和实现

InterPepScore 可在 http://wallnerlab.org/InterPepScore 在线获取。

补充信息

补充数据可在“Bioinformatics”在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04dc/9191208/948b28c212fa/btac325f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验