Suppr超能文献

通过自终止掺杂和逐层蚀刻制备的凹槽沟道WSe场效应晶体管

Recessed-Channel WSe Field-Effect Transistor via Self-Terminated Doping and Layer-by-Layer Etching.

作者信息

Lee Dongryul, Choi Yongha, Kim Junghun, Kim Jihyun

机构信息

School of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea.

School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea.

出版信息

ACS Nano. 2022 May 24;16(5):8484-8492. doi: 10.1021/acsnano.2c03402. Epub 2022 May 16.

Abstract

Effective channel control with low contact resistance can be accomplished through selective ion implantation in Si and III-V semiconductor technologies; however, this approach cannot be adopted for ultrathin van der Waals materials. Herein, we demonstrate a self-aligned fabrication process based on self-terminated p-doping and layer-by-layer chemical etching to achieve low contact resistance as well as a high on/off current ratio in ultrathin tungsten diselenide (WSe) field-effect transistors (FETs). Damage-free layer-by-layer thinning of the WSe channel is repeated up to a thickness of approximately 1.4 nm, while maintaining the selectively p-doped source/drain regions. The device characteristics of the recessed-channel WSe FET are systematically monitored during this layer-by-layer recess-channel process. The WSe etching rate is estimated to be 2-3 layers per cycle of oxidation and subsequent chemical etching. The self-terminated tungsten oxide (WO) layer grown through ultraviolet-ozone treatment induces robust p-doping in the neighboring (or underlying) WSe through the electron withdrawal mechanism, which remains in the source/drain regions after channel oxide removal. The adopted self-terminated and self-aligned recess-channel process for ultrathin WSe FETs enables the realization of a high on/off output current ratio (>10) and field-effect mobility (∼190 cm/V·s), while maintaining low contact resistance (0.9-6.1 kΩ·μm) without a postannealing process. The proposed facile and reproducible doping and atomic-layer-etching method for the fabrication of a recessed-channel FET with an ultrathin body can be helpful for high-performance two-dimensional semiconductor devices and is applicable to post-Si complementary metal-oxide semiconductor devices.

摘要

通过在硅和III-V族半导体技术中进行选择性离子注入,可以实现具有低接触电阻的有效沟道控制;然而,这种方法不适用于超薄范德华材料。在此,我们展示了一种基于自终止p型掺杂和逐层化学蚀刻的自对准制造工艺,以在超薄二硒化钨(WSe)场效应晶体管(FET)中实现低接触电阻以及高开关电流比。在保持选择性p型掺杂源/漏区的同时,对WSe沟道进行无损逐层减薄,直至厚度约为1.4nm。在此逐层凹陷沟道工艺过程中,系统地监测了凹陷沟道WSe FET的器件特性。估计WSe的蚀刻速率为每氧化和后续化学蚀刻循环2-3层。通过紫外臭氧处理生长的自终止氧化钨(WO)层通过电子抽取机制在相邻(或下层)WSe中诱导出强p型掺杂,在去除沟道氧化物后,该掺杂保留在源/漏区。所采用的用于超薄WSe FET的自终止和自对准凹陷沟道工艺能够实现高开关输出电流比(>10)和场效应迁移率(~190 cm²/V·s),同时在无需后退火工艺的情况下保持低接触电阻(0.9-6.1 kΩ·μm)。所提出的用于制造具有超薄体的凹陷沟道FET的简便且可重复的掺杂和原子层蚀刻方法,有助于高性能二维半导体器件,并且适用于后硅互补金属氧化物半导体器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验