Vu Van Tu, Vu Thi Thanh Huong, Phan Thanh Luan, Kang Won Tae, Kim Young Rae, Tran Minh Dao, Nguyen Huong Thi Thanh, Lee Young Hee, Yu Woo Jong
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
ACS Nano. 2021 Aug 24;15(8):13031-13040. doi: 10.1021/acsnano.1c02038. Epub 2021 Aug 5.
van der Waals heterostructures (vdWHs) of metallic (m-) and semiconducting (s-) transition-metal dichalcogenides (TMDs) exhibit an ideal metal/semiconductor (M/S) contact in a field-effect transistor. However, in the current two-step chemical vapor deposition process, the synthesis of m-TMD on pregrown s-TMD contaminates the van der Waals (vdW) interface and hinders the doping of s-TMD. Here, NbSe/Nb-doped-WSe metal-doped-semiconductor (M/d-S) vdWHs are created via a one-step synthesis approach using a niobium molar ratio-controlled solution-phase precursor. The one-step growth approach synthesizes Nb-doped WSe with a controllable doping concentration and metal/doped-semiconductor vdWHs. The hole carrier concentration can be precisely controlled by controlling the Nb/(W + Nb) molar ratio in the precursor solution from ∼3 × 10/cm at Nb-0% to ∼1.38 × 10/cm at Nb-60%; correspondingly, the contact resistance value decreases from 10 888.78 at Nb-0% to 70.60 kΩ.μm at Nb-60%. The Schottky barrier height measurement in the Arrhenius plots of ln(/) versus / demonstrated an ohmic contact in the NbSe/WNbSe vdWHs. Combining p-doping in WSe and M/d-S vdWHs, the mobility (27.24 cm V s) and on/off ratio (2.2 × 10) are increased 1238 and 4400 times, respectively, compared to that using the Cr/pure-WSe contact (0.022 cm V s and 5 × 10, respectively). Together, the value using the NbSe contact shows 2.46 kΩ.μm, which is ∼29 times lower than that of using a metal contact. This method is expected to guide the synthesis of various M/d-S vdWHs and applications in future high-performance integrated circuits.
金属(m-)和半导体(s-)过渡金属二硫属化物(TMD)的范德华异质结构(vdWHs)在场效应晶体管中表现出理想的金属/半导体(M/S)接触。然而,在当前的两步化学气相沉积过程中,在预生长的s-TMD上合成m-TMD会污染范德华(vdW)界面并阻碍s-TMD的掺杂。在此,通过使用铌摩尔比控制的溶液相前驱体的一步合成方法制备了NbSe/Nb掺杂的WSe金属掺杂半导体(M/d-S)vdWHs。一步生长方法合成了具有可控掺杂浓度的Nb掺杂WSe和金属/掺杂半导体vdWHs。通过控制前驱体溶液中的Nb/(W + Nb)摩尔比,空穴载流子浓度可以精确控制,从Nb-0%时的约3×10/cm到Nb-60%时的约1.38×10/cm;相应地,接触电阻值从Nb-0%时的10888.78降低到Nb-60%时的70.60kΩ·μm。在ln(/)对/的阿伦尼乌斯图中的肖特基势垒高度测量表明NbSe/WNbSe vdWHs中存在欧姆接触。结合WSe中的p型掺杂和M/d-S vdWHs,与使用Cr/纯WSe接触(分别为0.022cm²/V·s和5×10)相比,迁移率(27.24cm²/V·s)和开/关比(2.2×10)分别提高了1238倍和4400倍。使用NbSe接触时的 值为2.46kΩ·μm,比使用金属接触时低约29倍。该方法有望指导各种M/d-S vdWHs的合成及其在未来高性能集成电路中的应用。