Vicent-Morales María, Esteve-Rochina María, Calbo Joaquín, Ortí Enrique, Vitórica-Yrezábal Iñigo J, Mínguez Espallargas Guillermo
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain.
School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
J Am Chem Soc. 2022 May 25;144(20):9074-9082. doi: 10.1021/jacs.2c01957. Epub 2022 May 16.
Herein, we report on the use of tetrathiavulvalene-tetrabenzoic acid, HTTFTB, to engender semiconductivity in porous hydrogen-bonded organic frameworks (HOFs). By tuning the synthetic conditions, three different polymorphs have been obtained, denoted , , and , all of them presenting open structures (22, 15, and 27%, respectively) and suitable TTF stacking for efficient orbital overlap. Whereas collapses during the activation process, and offer high stability evacuation, with a CO sorption capacity of 1.91 and 1.71 mmol g, respectively, at 10 °C and 6 bar. Interestingly, both and present a zwitterionic character with a positively charged TTF core and a negatively charged carboxylate group. First-principles calculations predict the emergence of remarkable charge transport by means of a through-space hopping mechanism fostered by an efficient TTF π-π stacking and the spontaneous formation of persistent charge carriers in the form of radical TTF units. Transport measurements confirm the efficient charge transport in zwitterionic and with no need for postsynthetic treatment (e.g., electrochemical oxidation or doping), demonstrating the semiconductor nature of these HOFs with record experimental conductivities of 6.07 × 10 () and 1.35 × 10 S cm ().
在此,我们报道了使用四硫富瓦烯 - 四苯甲酸(HTTFTB)在多孔氢键有机框架(HOF)中产生半导体性。通过调节合成条件,获得了三种不同的多晶型物,分别表示为 、 和 ,它们均呈现开放结构(分别为22%、15%和27%)以及适合有效轨道重叠的TTF堆积。其中 在活化过程中坍塌,而 和 具有高稳定性的抽空性能,在10℃和6巴下,CO吸附容量分别为1.91和1.71 mmol g。有趣的是, 和 均呈现两性离子特征,具有带正电荷的TTF核心和带负电荷的羧基。第一性原理计算预测,通过高效的TTF π-π堆积促进的空间跳跃机制以及以自由基TTF单元形式自发形成的持久电荷载流子,会出现显著的电荷传输。传输测量证实了两性离子 和 中有效的电荷传输,无需进行后合成处理(例如电化学氧化或掺杂),证明了这些HOF的半导体性质,其实验电导率分别达到创纪录的6.07×10 ( )和1.35×10 S cm ( )。