Miller Quin R S, Pohl Mathias, Livo Kurt, Asgar Hassnain, Nune Satish K, Sinnwell Michael A, Prasad Manika, Gadikota Greeshma, McGrail B Peter, Schaef H Todd
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, United States.
ACS Appl Mater Interfaces. 2022 May 25;14(20):23420-23425. doi: 10.1021/acsami.2c03187. Epub 2022 May 16.
Injecting fluids into underground geologic structures is crucial for the development of long-term strategies for managing captured carbon and facilitating sustainable energy extraction operations. We have previously reported that the injection of metal-organic frameworks (MOFs) into the subsurface can enhance seismic monitoring tools to track fluids and map complex structures, reduce risk, and verify containment in carbon storage reservoirs because of their absorption capacity of low-frequency seismic waves. Here, we demonstrate that water-based Cr/Zn/Zr MOF colloidal suspensions (nanofluids) are multimodal geophysical contrast agents that enhance near-wellbore logging tools. Based on experimental fluid-only measurements, MIL-101(Cr), ZIF-8, and UiO-66 nanofluids have distinct complex conductivity and/or low-field nuclear magnetic resonance (NMR) signatures that are relevant to field-deployed technologies, implying the potential to enhance near-wellbore monitoring of CO injection and associated processes with downhole logging tools. Small- and wide-angle X-ray scattering characterization of ∼0.5 wt % MIL-101(Cr) suspensions confirmed phase stability and provided insight into the fractal nature of colloidal nanoparticles. Finally, low-field (2 MHz) NMR measurements of MIL-101(Cr) nanofluid injection into a prototypical Berea sandstone demonstrate how paramagnetic high-surface area MOFs may dominate the relaxation times of hydrogen-bearing fluids in porous geologic matrices, enhancing the mapping of near-surface and near-wellbore transport pathways and advancing sustainable subsurface energy technologies.
向地下地质结构中注入流体对于制定长期碳捕获管理策略以及促进可持续能源开采作业至关重要。我们之前曾报道,由于金属有机框架材料(MOFs)对低频地震波具有吸收能力,将其注入地下可增强地震监测工具,以追踪流体并绘制复杂结构,降低风险,并验证碳储存库中的封存情况。在此,我们证明水基Cr/Zn/Zr MOF胶体悬浮液(纳米流体)是多模态地球物理对比剂,可增强近井眼测井工具。基于仅对流体的实验测量,MIL-101(Cr)、ZIF-8和UiO-66纳米流体具有与现场部署技术相关的独特复电导率和/或低场核磁共振(NMR)特征,这意味着利用井下测井工具增强对CO注入及相关过程的近井眼监测具有潜力。对约0.5 wt%的MIL-101(Cr)悬浮液进行的小角和广角X射线散射表征证实了相稳定性,并深入了解了胶体纳米颗粒的分形性质。最后,将MIL-101(Cr)纳米流体注入典型的 Berea砂岩的低场(2 MHz)NMR测量表明,顺磁性高比表面积MOFs如何主导多孔地质基质中含氢流体的弛豫时间,增强近地表和近井眼传输路径的测绘,并推动可持续的地下能源技术发展。