Suppr超能文献

复发前你会说什么?同伴在线讨论论坛中的语言使用如何预测康复者的危险饮酒行为。

What Do You Say Before You Relapse? How Language Use in a Peer-to-peer Online Discussion Forum Predicts Risky Drinking among Those in Recovery.

机构信息

a School of Journalism and Mass Communication , University of Wisconsin-Madison.

b Department of Communication Arts , University of Wisconsin-Madison.

出版信息

Health Commun. 2018 Sep;33(9):1184-1193. doi: 10.1080/10410236.2017.1350906. Epub 2017 Aug 9.

Abstract

Increasingly, individuals with alcohol use disorder (AUD) seek and provide support for relapse prevention in text-based online environments such as discussion forums. This paper investigates whether language use within a peer-to-peer discussion forum can predict future relapse among individuals treated for AUD. A total of 104 AUD sufferers who had completed residential treatment participated in a mobile phone-based relapse-prevention program, where they communicated via an online forum over the course of a year. We extracted patterns of language use on the forum within the first four months on study using Linguistic Inquiry and Word Count (LIWC), a dictionary-based text analysis program. Participants reported their incidence of risky drinking via a survey at 4, 8, and 12 months. A logistic regression model was built to predict the likelihood that individuals would engage in risky drinking within a year based on their language use, while controlling for baseline characteristics and rates of utilizing the mobile system. Results show that all baseline characteristics and system use factors explained just 13% of the variance in relapse, whereas a small number of linguistic cues, including swearing and cognitive mechanism words, accounted for an additional 32% of the total 45% of variance in relapse explained by the model. Effective models for predicting relapse are needed. Messages exchanged on AUD forums could provide an unobtrusive and cost-effective window into the future health outcomes of AUD sufferers, and their psychological underpinnings. As online communication expands, models that leverage user-submitted text toward predicting relapse will be increasingly scalable and actionable.

摘要

越来越多的酒精使用障碍(AUD)患者在基于文本的在线环境(如论坛)中寻求和提供预防复发的支持。本文研究了在同伴对同伴讨论论坛中使用的语言是否可以预测接受 AUD 治疗的个体未来的复发情况。共有 104 名 AUD 患者完成了住院治疗,他们参与了一项基于手机的预防复发计划,在一年的时间里通过在线论坛进行交流。我们使用基于词典的文本分析程序 Linguistic Inquiry and Word Count (LIWC),在研究的前四个月内从论坛上提取语言使用模式。参与者在 4、8 和 12 个月时通过调查报告他们的危险饮酒发生率。建立了一个逻辑回归模型,根据语言使用情况预测个体在一年内进行危险饮酒的可能性,同时控制基线特征和使用移动系统的比率。结果表明,所有基线特征和系统使用因素仅解释了复发方差的 13%,而一些语言线索,包括咒骂和认知机制词,解释了模型中复发总方差的 45%的另外 32%。需要有效的复发预测模型。在 AUD 论坛上交换的信息可以为 AUD 患者的未来健康结果及其心理基础提供一个不引人注目的、具有成本效益的窗口。随着在线交流的扩大,利用用户提交的文本预测复发的模型将越来越具有可扩展性和可操作性。

相似文献

10
Computational markers of risky decision-making predict for relapse to alcohol.风险决策的计算标记物可预测酒精复发。
Eur Arch Psychiatry Clin Neurosci. 2024 Mar;274(2):353-362. doi: 10.1007/s00406-023-01602-0. Epub 2023 May 6.

引用本文的文献

5
Brain tract structure predicts relapse to stimulant drug use.脑束结构可预测兴奋剂药物使用复发。
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2116703119. doi: 10.1073/pnas.2116703119. Epub 2022 Jun 21.
6
Using Facebook language to predict and describe excessive alcohol use.利用 Facebook 语言预测和描述过度饮酒行为。
Alcohol Clin Exp Res. 2022 May;46(5):836-847. doi: 10.1111/acer.14807. Epub 2022 May 16.

本文引用的文献

2
Recovery Amid Pro-Anorexia: Analysis of Recovery in Social Media.亲厌食症环境下的康复:社交媒体中的康复分析
Proc SIGCHI Conf Hum Factor Comput Syst. 2016 May;2016:2111-2123. doi: 10.1145/2858036.2858246.
4
Characterizing Smoking and Drinking Abstinence from Social Media.通过社交媒体描述戒烟和戒酒情况。
HT ACM Conf Hypertext Soc Media. 2015 Sep;2015:139-148. doi: 10.1145/2700171.2791247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验