Suppr超能文献

基于双混合模型的卷积神经网络用于图像去噪

Dual Mixture Model Based CNN for Image Denoising.

作者信息

Li Zhuoxiao, Wang Faqiang, Cui Li, Liu Jun

出版信息

IEEE Trans Image Process. 2022;31:3618-3629. doi: 10.1109/TIP.2022.3173814. Epub 2022 May 26.

Abstract

Non-Gaussian residual error and noise are common in the real applications, and they can be efficiently addressed by some non-quadratic fidelity terms in the classic variational method. However, they have not been well integrated into the architectures design in the convolutional neural networks (CNN) based image denoising method. In this paper, we propose a deep learning approach to handle non-Gaussian residual error. Our method is developed on an universal approximation property for the probability density functions of the non-Gaussian error/noise. By considering the duality of the maximum likelihood estimation for the non-Gaussian error, an adaptive weighting strategy can be derived for image fidelity. To get a good image prior, a learnable regularizer is adopted. Solving such a problem iteratively can be unrolled as a weighted residual CNN architecture. The main advantage of our method is that the weighted residual block can well handle the non-Gaussian residual, especially for the noise with non-uniformly spatial distribution. Numerical results show that it has better performance on non-Gaussian noise (e.g. Gaussian mixture, random-valued impulse noise) removal than the related existing methods.

摘要

非高斯残差误差和噪声在实际应用中很常见,经典变分方法中的一些非二次保真项可以有效地处理它们。然而,在基于卷积神经网络(CNN)的图像去噪方法中,它们尚未很好地融入到架构设计中。在本文中,我们提出了一种深度学习方法来处理非高斯残差误差。我们的方法是基于非高斯误差/噪声概率密度函数的通用逼近性质开发的。通过考虑非高斯误差最大似然估计的对偶性,可以导出一种用于图像保真度的自适应加权策略。为了获得良好的图像先验,采用了一种可学习的正则化器。迭代求解这样一个问题可以展开为一个加权残差CNN架构。我们方法的主要优点是加权残差块能够很好地处理非高斯残差,特别是对于具有非均匀空间分布的噪声。数值结果表明,在去除非高斯噪声(如高斯混合噪声、随机值脉冲噪声)方面,它比相关现有方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验