Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes, F-44000, France.
Nantes Université, CHU Nantes, Department of Endocrinology, l'Institut du Thorax, Nantes, F-44000, France.
Sci Rep. 2022 May 16;12(1):8017. doi: 10.1038/s41598-022-11772-x.
Patients with type 1 diabetes are subject to exogenous insulin injections, whether manually or through (semi)automated insulin pumps. Basic knowledge of the patient's characteristics and flexible insulin therapy (FIT) parameters are then needed. Specifically, artificial pancreas-like closed-loop insulin delivery systems are some of the most promising devices for substituting for endogenous insulin secretion in type 1 diabetes patients. However, these devices require self-reported information such as carbohydrates or physical activity from the patient, introducing potential miscalculations and delays that can have life-threatening consequences. Here, we display a metamodel for glucose-insulin dynamics that is subject to carbohydrate ingestion and aerobic physical activity. This metamodel incorporates major existing knowledge-based models. We derive comprehensive and universal definitions of the underlying FIT parameters to form an insulin sensitivity factor (ISF). In addition, the relevance of physical activity modelling is assessed, and the FIT is updated to take physical exercise into account. Specifically, we cope with physical activity by using heart rate sensors (watches) with a fully automated closed insulin loop, aiming to maximize the time spent in the glycaemic range (75.5% in the range and 1.3% below the range for hypoglycaemia on a virtual patient simulator).These mathematical parameter definitions are interesting on their own, may be new tools for assessing mathematical models and can ultimately be used in closed-loop artificial pancreas algorithms or to extend distinguished FIT.
1 型糖尿病患者需要进行外源性胰岛素注射,无论是手动注射还是通过(半)自动化胰岛素泵进行注射。然后,需要了解患者的基本特征和灵活的胰岛素治疗(FIT)参数。具体来说,类似于人工胰腺的闭环胰岛素输送系统是替代 1 型糖尿病患者内源性胰岛素分泌的最有前途的设备之一。然而,这些设备需要患者提供诸如碳水化合物或体力活动等自报告信息,这可能会导致潜在的计算错误和延迟,从而产生危及生命的后果。在这里,我们展示了一个受碳水化合物摄入和有氧运动影响的葡萄糖-胰岛素动力学的变分模型。该变分模型包含了主要的现有基于知识的模型。我们对基础 FIT 参数进行了全面和通用的定义,形成了胰岛素敏感性因子(ISF)。此外,还评估了体力活动建模的相关性,并对 FIT 进行了更新以考虑体力活动。具体来说,我们通过使用带有全自动闭环胰岛素的心率传感器(手表)来应对体力活动,旨在使血糖范围内的时间最大化(在虚拟患者模拟器上,血糖范围为 75.5%,低血糖范围为 1.3%)。这些数学参数定义本身就很有趣,可能是评估数学模型的新工具,最终可用于闭环人工胰腺算法或扩展杰出的 FIT。