Department of Physics, University of Washington, Seattle, WA, 98195, USA.
Pacific Northwest Research Institute, Seattle, WA, 98122, USA.
Sci Data. 2022 May 17;9(1):216. doi: 10.1038/s41597-022-01340-3.
Baker's yeast (Saccharomyces cerevisiae) is a model organism for studying the morphology that emerges at the scale of multi-cell colonies. To look at how morphology develops, we collect a dataset of time-lapse photographs of the growth of different strains of S. cerevisiae. We discuss the general statistical challenges that arise when using time-lapse photographs to extract time-dependent features. In particular, we show how texture-based feature engineering and representative clustering can be successfully applied to categorize the development of yeast colony morphology using our dataset. The Local binary pattern (LBP) from image processing is used to score the surface texture of colonies. This texture score develops along a smooth trajectory during growth. The path taken depends on how the morphology emerges. A hierarchical clustering of the colonies is performed according to their texture development trajectories. The clustering method is designed for practical interpretability; it obtains the best representative colony image for any hierarchical cluster.
面包酵母(酿酒酵母)是一种用于研究多细胞群体尺度上出现的形态的模式生物。为了研究形态的发展,我们收集了不同酿酒酵母菌株生长的延时照片数据集。我们讨论了使用延时照片提取时变特征时出现的一般统计挑战。特别是,我们展示了如何成功地应用基于纹理的特征工程和代表性聚类来对酵母菌落形态的发展进行分类,我们的数据集。图像处理中的局部二值模式(LBP)用于对菌落的表面纹理进行评分。该纹理评分在生长过程中沿着平滑的轨迹发展。所走的路径取决于形态的出现方式。根据纹理发展轨迹对菌落进行层次聚类。聚类方法的设计具有实际的可解释性;它为任何层次聚类获得了最佳的代表性菌落图像。