Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.
Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
Stat Med. 2022 Jul 30;41(17):3398-3420. doi: 10.1002/sim.9424. Epub 2022 May 17.
Identifying exceptional responders or nonresponders is an area of increased research interest in precision medicine as these patients may have different biological or molecular features and therefore may respond differently to therapies. Our motivation stems from a real example from a clinical trial where we are interested in characterizing exceptional prostate cancer responders. We investigate the outlier detection and robust regression problem in the sparse proportional hazards model for censored survival outcomes. The main idea is to model the irregularity of each observation by assigning an individual weight to the hazard function. By applying a LASSO-type penalty on both the model parameters and the log transformation of the weight vector, our proposed method is able to perform variable selection and outlier detection simultaneously. The optimization problem can be transformed to a typical penalized maximum partial likelihood problem and thus it is easy to implement. We further extend the proposed method to deal with the potential outlier masking problem caused by censored outcomes. The performance of the proposed estimator is demonstrated with extensive simulation studies and real data analyses in low-dimensional and high-dimensional settings.
识别卓越响应者或非响应者是精准医学中研究兴趣增加的一个领域,因为这些患者可能具有不同的生物学或分子特征,因此对治疗的反应可能不同。我们的动机源于临床试验中的一个实际示例,我们有兴趣描述卓越的前列腺癌响应者。我们研究了在删失生存数据的稀疏比例风险模型中进行异常值检测和稳健回归的问题。主要思想是通过为风险函数分配个体权重来对每个观察值的不规则性进行建模。通过对模型参数和权重向量的对数变换同时施加 LASSO 型惩罚,我们提出的方法能够同时进行变量选择和异常值检测。优化问题可以转换为典型的惩罚极大似然问题,因此易于实现。我们进一步将提出的方法扩展到处理由删失结果引起的潜在异常值掩盖问题。在低维和高维设置中,通过广泛的模拟研究和实际数据分析,展示了所提出的估计器的性能。