Vermeer Benjamin, Schmid Sonja
NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
Nano Res. 2022;15(11):9818-9830. doi: 10.1007/s12274-022-4420-5. Epub 2022 May 13.
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range.
Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
生物分子系统,如蛋白质,至关重要地依赖于纳米尺度的动态过程。因此,检测生物分子纳米动力学是获得对控制生物分子系统的能量和分子驱动力的机理理解的关键。单分子荧光共振能量转移(smFRET)是一种强大的技术,可实时观察单个生物分子如何通过其涉及一系列不同结构状态的功能循环。目前,该技术从根本上受到不可逆光漂白的限制,导致实验过早结束,因此时间带宽狭窄,≤3个数量级。在此,我们引入“染料循环”,这是一种旨在突破smFRET中光漂白限制的测量方案。我们通过模拟引入自发染料替换的概念,作为实验概念验证,我们展示了以毫秒级时间分辨率对单个生物分子进行一小时的间歇性观察。理论上,染料循环每个单分子能提供比传统smFRET多100倍以上的信息。我们讨论了染料循环的实验实施、其当前和基本限制以及特定的生物学应用案例。鉴于其普遍的简单性和通用性,染料循环有潜力彻底改变时间分辨smFRET领域,在该领域它可通过从毫秒到小时范围的跨越来揭示大量生物分子动力学。
本文的补充材料可在10.1007/s12274 - 022 - 4420 - 5获取,授权用户可访问。